Goto

Collaborating Authors

 Wang, Ning


ContextDet: Temporal Action Detection with Adaptive Context Aggregation

arXiv.org Artificial Intelligence

Temporal action detection (TAD), which locates and recognizes action segments, remains a challenging task in video understanding due to variable segment lengths and ambiguous boundaries. Existing methods treat neighboring contexts of an action segment indiscriminately, leading to imprecise boundary predictions. We introduce a single-stage ContextDet framework, which makes use of large-kernel convolutions in TAD for the first time. Our model features a pyramid adaptive context aggragation (ACA) architecture, capturing long context and improving action discriminability. Each ACA level consists of two novel modules. The context attention module (CAM) identifies salient contextual information, encourages context diversity, and preserves context integrity through a context gating block (CGB). The long context module (LCM) makes use of a mixture of large- and small-kernel convolutions to adaptively gather long-range context and fine-grained local features. Additionally, by varying the length of these large kernels across the ACA pyramid, our model provides lightweight yet effective context aggregation and action discrimination. We conducted extensive experiments and compared our model with a number of advanced TAD methods on six challenging TAD benchmarks: MultiThumos, Charades, FineAction, EPIC-Kitchens 100, Thumos14, and HACS, demonstrating superior accuracy at reduced inference speed.


Correlation-Aware Select and Merge Attention for Efficient Fine-Tuning and Context Length Extension

arXiv.org Artificial Intelligence

Modeling long sequences is crucial for various large-scale models; however, extending existing architectures to handle longer sequences presents significant technical and resource challenges. In this paper, we propose an efficient and flexible attention architecture that enables the extension of context lengths in large language models with reduced computational resources and fine-tuning time compared to other excellent methods. Specifically, we introduce correlation-aware selection and merging mechanisms to facilitate efficient sparse attention. In addition, we also propose a novel data augmentation technique involving positional encodings to enhance generalization to unseen positions. The results are as follows: First, using a single A100, we achieve fine-tuning on Llama2-7B with a sequence length of 32K, which is more efficient than other methods that rely on subsets for regression. Second, we present a comprehensive method for extending context lengths across the pre-training, fine-tuning, and inference phases. During pre-training, our attention mechanism partially breaks translation invariance during token selection, so we apply positional encodings only to the selected tokens. This approach achieves relatively high performance and significant extrapolation capabilities. For fine-tuning, we introduce Cyclic, Randomly Truncated, and Dynamically Growing NTK Positional Embedding (CRD NTK). This design allows fine-tuning with a sequence length of only 16K, enabling models such as Llama2-7B and Mistral-7B to perform inference with context lengths of up to 1M or even arbitrary lengths. Our method achieves 100\% accuracy on the passkey task with a context length of 4M and maintains stable perplexity at a 1M context length. This represents at least a 64-fold reduction in resource requirements compared to traditional full-attention mechanisms, while still achieving competitive performance.


Location is Key: Leveraging Large Language Model for Functional Bug Localization in Verilog

arXiv.org Artificial Intelligence

Bug localization in Verilog code is a crucial and time-consuming task during the verification of hardware design. Since introduction, Large Language Models (LLMs) have showed their strong programming capabilities. However, no work has yet considered using LLMs for bug localization in Verilog code. This paper presents Location-is-Key, an opensource LLM solution to locate functional errors in Verilog snippets. LiK achieves high localization accuracy, with a pass@1 localization accuracy of 93.3% on our test dataset based on RTLLM, surpassing GPT-4's 77.9% and comparable to Claude-3.5's 90.8%. Additionally, the bug location obtained by LiK significantly improves GPT-3.5's bug repair efficiency (Functional pass@1 increased from 40.39% to 58.92%), highlighting the importance of bug localization in LLM-based Verilog debugging. Compared to existing methods, LiK only requires the design specification and the erroneous code snippet, without the need for testbenches, assertions, or any other EDA tools. This research demonstrates the feasibility of using LLMs for Verilog error localization, thus providing a new direction for automatic Verilog code debugging.


Methodology of Adapting Large English Language Models for Specific Cultural Contexts

arXiv.org Artificial Intelligence

The rapid growth of large language models(LLMs) has emerged as a prominent trend in the field of artificial intelligence. However, current state-of-the-art LLMs are predominantly based on English. They encounter limitations when directly applied to tasks in specific cultural domains, due to deficiencies in domain-specific knowledge and misunderstandings caused by differences in cultural values. To address this challenge, our paper proposes a rapid adaptation method for large models in specific cultural contexts, which leverages instruction-tuning based on specific cultural knowledge and safety values data. Taking Chinese as the specific cultural context and utilizing the LLaMA3-8B as the experimental English LLM, the evaluation results demonstrate that the adapted LLM significantly enhances its capabilities in domain-specific knowledge and adaptability to safety values, while maintaining its original expertise advantages.


Similarity Guided Multimodal Fusion Transformer for Semantic Location Prediction in Social Media

arXiv.org Artificial Intelligence

Semantic location prediction aims to derive meaningful location insights from multimodal social media posts, offering a more contextual understanding of daily activities than using GPS coordinates. This task faces significant challenges due to the noise and modality heterogeneity in "text-image" posts. Existing methods are generally constrained by inadequate feature representations and modal interaction, struggling to effectively reduce noise and modality heterogeneity. To address these challenges, we propose a Similarity-Guided Multimodal Fusion Transformer (SG-MFT) for predicting the semantic locations of users from their multimodal posts. First, we incorporate high-quality text and image representations by utilizing a pre-trained large vision-language model. Then, we devise a Similarity-Guided Interaction Module (SIM) to alleviate modality heterogeneity and noise interference by incorporating both coarse-grained and fine-grained similarity guidance for improving modality interactions. Specifically, we propose a novel similarity-aware feature interpolation attention mechanism at the coarse-grained level, leveraging modality-wise similarity to mitigate heterogeneity and reduce noise within each modality. At the fine-grained level, we utilize a similarity-aware feed-forward block and element-wise similarity to further address the issue of modality heterogeneity. Finally, building upon pre-processed features with minimal noise and modal interference, we devise a Similarity-aware Fusion Module (SFM) to fuse two modalities with a cross-attention mechanism. Comprehensive experimental results clearly demonstrate the superior performance of our proposed method.


NoiSec: Harnessing Noise for Security against Adversarial and Backdoor Attacks

arXiv.org Artificial Intelligence

The exponential adoption of machine learning (ML) is propelling the world into a future of intelligent automation and data-driven solutions. However, the proliferation of malicious data manipulation attacks against ML, namely adversarial and backdoor attacks, jeopardizes its reliability in safety-critical applications. The existing detection methods against such attacks are built upon assumptions, limiting them in diverse practical scenarios. Thus, motivated by the need for a more robust and unified defense mechanism, we investigate the shared traits of adversarial and backdoor attacks and propose NoiSec that leverages solely the noise, the foundational root cause of such attacks, to detect any malicious data alterations. NoiSec is a reconstruction-based detector that disentangles the noise from the test input, extracts the underlying features from the noise, and leverages them to recognize systematic malicious manipulation. Experimental evaluations conducted on the CIFAR10 dataset demonstrate the efficacy of NoiSec, achieving AUROC scores exceeding 0.954 and 0.852 under white-box and black-box adversarial attacks, respectively, and 0.992 against backdoor attacks. Notably, NoiSec maintains a high detection performance, keeping the false positive rate within only 1\%. Comparative analyses against MagNet-based baselines reveal NoiSec's superior performance across various attack scenarios.


LR-CNN: Lightweight Row-centric Convolutional Neural Network Training for Memory Reduction

arXiv.org Artificial Intelligence

In the last decade, Convolutional Neural Network with a multi-layer architecture has advanced rapidly. However, training its complex network is very space-consuming, since a lot of intermediate data are preserved across layers, especially when processing high-dimension inputs with a big batch size. That poses great challenges to the limited memory capacity of current accelerators (e.g., GPUs). Existing efforts mitigate such bottleneck by external auxiliary solutions with additional hardware costs, and internal modifications with potential accuracy penalty. Differently, our analysis reveals that computations intra- and inter-layers exhibit the spatial-temporal weak dependency and even complete independency features. That inspires us to break the traditional layer-by-layer (column) dataflow rule. Now operations are novelly re-organized into rows throughout all convolution layers. This lightweight design allows a majority of intermediate data to be removed without any loss of accuracy. We particularly study the weak dependency between two consecutive rows. For the resulting skewed memory consumption, we give two solutions with different favorite scenarios. Evaluations on two representative networks confirm the effectiveness. We also validate that our middle dataflow optimization can be smoothly embraced by existing works for better memory reduction.


Image classification network enhancement methods based on knowledge injection

arXiv.org Artificial Intelligence

The current deep neural network algorithm still stays in the end-to-end training supervision method like Image-Label pairs, which makes traditional algorithm is difficult to explain the reason for the results, and the prediction logic is difficult to understand and analyze. The current algorithm does not use the existing human knowledge information, which makes the model not in line with the human cognition model and makes the model not suitable for human use. In order to solve the above problems, the present invention provides a deep neural network training method based on the human knowledge, which uses the human cognition model to construct the deep neural network training model, and uses the existing human knowledge information to construct the deep neural network training model. This paper proposes a multi-level hierarchical deep learning algorithm, which is composed of multi-level hierarchical deep neural network architecture and multi-level hierarchical deep learning framework. The experimental results show that the proposed algorithm can effectively explain the hidden information of the neural network. The goal of our study is to improve the interpretability of deep neural networks (DNNs) by providing an analysis of the impact of knowledge injection on the classification task. We constructed a knowledge injection dataset with matching knowledge data and image classification data. The knowledge injection dataset is the benchmark dataset for the experiments in the paper. Our model expresses the improvement in interpretability and classification task performance of hidden layers at different scales.


Scale-MIA: A Scalable Model Inversion Attack against Secure Federated Learning via Latent Space Reconstruction

arXiv.org Artificial Intelligence

Federated learning is known for its capability to safeguard participants' data privacy. However, recently emerged model inversion attacks (MIAs) have shown that a malicious parameter server can reconstruct individual users' local data samples through model updates. The state-of-the-art attacks either rely on computation-intensive search-based optimization processes to recover each input batch, making scaling difficult, or they involve the malicious parameter server adding extra modules before the global model architecture, rendering the attacks too conspicuous and easily detectable. To overcome these limitations, we propose Scale-MIA, a novel MIA capable of efficiently and accurately recovering training samples of clients from the aggregated updates, even when the system is under the protection of a robust secure aggregation protocol. Unlike existing approaches treating models as black boxes, Scale-MIA recognizes the importance of the intricate architecture and inner workings of machine learning models. It identifies the latent space as the critical layer for breaching privacy and decomposes the complex recovery task into an innovative two-step process to reduce computation complexity. The first step involves reconstructing the latent space representations (LSRs) from the aggregated model updates using a closed-form inversion mechanism, leveraging specially crafted adversarial linear layers. In the second step, the whole input batches are recovered from the LSRs by feeding them into a fine-tuned generative decoder. We implemented Scale-MIA on multiple commonly used machine learning models and conducted comprehensive experiments across various settings. The results demonstrate that Scale-MIA achieves excellent recovery performance on different datasets, exhibiting high reconstruction rates, accuracy, and attack efficiency on a larger scale compared to state-of-the-art MIAs.


Detrive: Imitation Learning with Transformer Detection for End-to-End Autonomous Driving

arXiv.org Artificial Intelligence

This Paper proposes a novel Transformer-based end-to-end autonomous driving model named Detrive. This model solves the problem that the past end-to-end models cannot detect the position and size of traffic participants. Detrive uses an end-to-end transformer based detection model as its perception module; a multi-layer perceptron as its feature fusion network; a recurrent neural network with gate recurrent unit for path planning; and two controllers for the vehicle's forward speed and turning angle. The model is trained with an on-line imitation learning method. In order to obtain a better training set, a reinforcement learning agent that can directly obtain a ground truth bird's-eye view map from the Carla simulator as a perceptual output, is used as teacher for the imitation learning. The trained model is tested on the Carla's autonomous driving benchmark. The results show that the Transformer detector based end-to-end model has obvious advantages in dynamic obstacle avoidance compared with the traditional classifier based end-to-end model.