Wang, Ning
Safety Evaluation and Enhancement of DeepSeek Models in Chinese Contexts
Zhang, Wenjing, Lei, Xuejiao, Liu, Zhaoxiang, Han, Limin, Zhao, Jiaojiao, Huang, Beibei, Long, Zhenhong, Guo, Junting, An, Meijuan, Du, Rongjia, Wang, Ning, Wang, Kai, Lian, Shiguo
DeepSeek-R1, renowned for its exceptional reasoning capabilities and open-source strategy, is significantly influencing the global artificial intelligence landscape. However, it exhibits notable safety shortcomings. Recent research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 achieves a 100\% attack success rate when processing harmful prompts. Furthermore, multiple security firms and research institutions have identified critical security vulnerabilities within the model. Although China Unicom has uncovered safety vulnerabilities of R1 in Chinese contexts, the safety capabilities of the remaining distilled models in the R1 series have not yet been comprehensively evaluated. To address this gap, this study utilizes the comprehensive Chinese safety benchmark CHiSafetyBench to conduct an in-depth safety evaluation of the DeepSeek-R1 series distilled models. The objective is to assess the safety capabilities of these models in Chinese contexts both before and after distillation, and to further elucidate the adverse effects of distillation on model safety. Building on these findings, we implement targeted safety enhancements for six distilled models. Evaluation results indicate that the enhanced models achieve significant improvements in safety while maintaining reasoning capabilities without notable degradation. We open-source the safety-enhanced models at https://github.com/UnicomAI/DeepSeek-R1-Distill-Safe/tree/main to serve as a valuable resource for future research and optimization of DeepSeek models.
DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models
Shen, Yi, Zhang, Jian, Huang, Jieyun, Shi, Shuming, Zhang, Wenjing, Yan, Jiangze, Wang, Ning, Wang, Kai, Lian, Shiguo
Recent advancements in slow-thinking reasoning models have shown exceptional performance in complex reasoning tasks. However, these models often exhibit overthinking-generating redundant reasoning steps for simple problems, leading to excessive computational resource usage. While current mitigation strategies uniformly reduce reasoning tokens, they risk degrading performance on challenging tasks that require extended reasoning. This paper introduces Difficulty-Adaptive Slow-Thinking (DAST), a novel framework that enables models to autonomously adjust the length of Chain-of-Thought(CoT) based on problem difficulty. We first propose a Token Length Budget (TLB) metric to quantify difficulty, then leveraging length-aware reward shaping and length preference optimization to implement DAST. DAST penalizes overlong responses for simple tasks while incentivizing sufficient reasoning for complex problems. Experiments on diverse datasets and model scales demonstrate that DAST effectively mitigates overthinking (reducing token usage by over 30\% on average) while preserving reasoning accuracy on complex problems.
GPU Memory Usage Optimization for Backward Propagation in Deep Network Training
Hong, Ding-Yong, Tsai, Tzu-Hsien, Wang, Ning, Liu, Pangfeng, Wu, Jan-Jan
In modern Deep Learning, it has been a trend to design larger Deep Neural Networks (DNNs) for the execution of more complex tasks and better accuracy. On the other hand, Convolutional Neural Networks (CNNs) have become the standard method for most of computer vision tasks. However, the memory allocation for the intermediate data in convolution layers can cause severe memory pressure during model training. Many solutions have been proposed to resolve the problem. Besides hardware-dependent solutions, a general methodology rematerialization can reduce GPU memory usage by trading computation for memory efficiently. The idea is to select a set of intermediate results during the forward phase as checkpoints, and only save them in memory to reduce memory usage. The backward phase recomputes the intermediate data from the closest checkpoints in memory as needed. This recomputation increases execution time but saves memory by not storing all intermediate results in memory during the forward phase. In this paper, we will focus on efficiently finding the optimal checkpoint subset to achieve the least peak memory usage during the model training. We first describe the theoretical background of the training of a neural network using mathematical equations. We use these equations to identify all essential data required during both forward and backward phases to compute the gradient of weights of the model. We first identify the checkpoint selection problem and propose a dynamic programming algorithm with time complexity O(n3) to solve the problem of finding the optimal checkpoint subset. With extensive experiments, we formulate a more accurate description of the problem using our theoretical analysis and revise the objective function based on the tracing, and propose an O(n)-time algorithm for finding the optimal checkpoint subset.
Quantifying the Capability Boundary of DeepSeek Models: An Application-Driven Performance Analysis
Lian, Shiguo, Zhao, Kaikai, Lei, Xuejiao, Wang, Ning, Long, Zhenhong, Yang, Peijun, Hua, Minjie, Ma, Chaoyang, Liu, Wen, Wang, Kai, Liu, Zhaoxiang
DeepSeek-R1, known for its low training cost and exceptional reasoning capabilities, has achieved state-of-the-art performance on various benchmarks. However, detailed evaluations from the perspective of real-world applications are lacking, making it challenging for users to select the most suitable DeepSeek models for their specific needs. To address this gap, we evaluate the DeepSeek-V3, DeepSeek-R1, DeepSeek-R1-Distill-Qwen series, and DeepSeek-R1-Distill-Llama series on A-Eval, an application-driven benchmark. By comparing original instruction-tuned models with their distilled counterparts, we analyze how reasoning enhancements impact performance across diverse practical tasks. Our results show that reasoning-enhanced models, while generally powerful, do not universally outperform across all tasks, with performance gains varying significantly across tasks and models. To further assist users in model selection, we quantify the capability boundary of DeepSeek models through performance tier classifications and intuitive line charts. Specific examples provide actionable insights to help users select and deploy the most cost-effective DeepSeek models, ensuring optimal performance and resource efficiency in real-world applications.
Safety Evaluation of DeepSeek Models in Chinese Contexts
Zhang, Wenjing, Lei, Xuejiao, Liu, Zhaoxiang, Wang, Ning, Long, Zhenhong, Yang, Peijun, Zhao, Jiaojiao, Hua, Minjie, Ma, Chaoyang, Wang, Kai, Lian, Shiguo
Recently, the DeepSeek series of models, leveraging their exceptional reasoning capabilities and open-source strategy, is reshaping the global AI landscape. Despite these advantages, they exhibit significant safety deficiencies. Research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 has a 100\% attack success rate when processing harmful prompts. Additionally, multiple safety companies and research institutions have confirmed critical safety vulnerabilities in this model. As models demonstrating robust performance in Chinese and English, DeepSeek models require equally crucial safety assessments in both language contexts. However, current research has predominantly focused on safety evaluations in English environments, leaving a gap in comprehensive assessments of their safety performance in Chinese contexts. In response to this gap, this study introduces CHiSafetyBench, a Chinese-specific safety evaluation benchmark. This benchmark systematically evaluates the safety of DeepSeek-R1 and DeepSeek-V3 in Chinese contexts, revealing their performance across safety categories. The experimental results quantify the deficiencies of these two models in Chinese contexts, providing key insights for subsequent improvements.
Preventing Non-intrusive Load Monitoring Privacy Invasion: A Precise Adversarial Attack Scheme for Networked Smart Meters
He, Jialing, Wang, Jiacheng, Wang, Ning, Guo, Shangwei, Zhu, Liehuang, Niyato, Dusit, Xiang, Tao
Smart grid, through networked smart meters employing the non-intrusive load monitoring (NILM) technique, can considerably discern the usage patterns of residential appliances. However, this technique also incurs privacy leakage. To address this issue, we propose an innovative scheme based on adversarial attack in this paper. The scheme effectively prevents NILM models from violating appliance-level privacy, while also ensuring accurate billing calculation for users. To achieve this objective, we overcome two primary challenges. First, as NILM models fall under the category of time-series regression models, direct application of traditional adversarial attacks designed for classification tasks is not feasible. To tackle this issue, we formulate a novel adversarial attack problem tailored specifically for NILM and providing a theoretical foundation for utilizing the Jacobian of the NILM model to generate imperceptible perturbations. Leveraging the Jacobian, our scheme can produce perturbations, which effectively misleads the signal prediction of NILM models to safeguard users' appliance-level privacy. The second challenge pertains to fundamental utility requirements, where existing adversarial attack schemes struggle to achieve accurate billing calculation for users. To handle this problem, we introduce an additional constraint, mandating that the sum of added perturbations within a billing period must be precisely zero. Experimental validation on real-world power datasets REDD and UK-DALE demonstrates the efficacy of our proposed solutions, which can significantly amplify the discrepancy between the output of the targeted NILM model and the actual power signal of appliances, and enable accurate billing at the same time. Additionally, our solutions exhibit transferability, making the generated perturbation signal from one target model applicable to other diverse NILM models.
Multi-Source Unsupervised Domain Adaptation with Prototype Aggregation
Huang, Min, Xie, Zifeng, Sun, Bo, Wang, Ning
Multi-source domain adaptation (MSDA) plays an important role in industrial model generalization. Recent efforts on MSDA focus on enhancing multi-domain distributional alignment while omitting three issues, e.g., the class-level discrepancy quantification, the unavailability of noisy pseudo-label, and source transferability discrimination, potentially resulting in suboptimal adaption performance. Therefore, we address these issues by proposing a prototype aggregation method that models the discrepancy between source and target domains at the class and domain levels. Our method achieves domain adaptation based on a group of prototypes (i.e., representative feature embeddings). A similarity score-based strategy is designed to quantify the transferability of each domain. At the class level, our method quantifies class-specific cross-domain discrepancy according to reliable target pseudo-labels. At the domain level, our method establishes distributional alignment between noisy pseudo-labeled target samples and the source domain prototypes. Therefore, adaptation at the class and domain levels establishes a complementary mechanism to obtain accurate predictions. The results on three standard benchmarks demonstrate that our method outperforms most state-of-the-art methods. In addition, we provide further elaboration of the proposed method in light of the interpretable results obtained from the analysis experiments.
A hybrid framework for effective and efficient machine unlearning
Li, Mingxin, Yu, Yizhen, Wang, Ning, Wang, Zhigang, Wang, Xiaodong, Qu, Haipeng, Xu, Jia, Su, Shen, Yin, Zhichao
Recently machine unlearning (MU) is proposed to remove the imprints of revoked samples from the already trained model parameters, to solve users' privacy concern. Different from the runtime expensive retraining from scratch, there exist two research lines, exact MU and approximate MU with different favorites in terms of accuracy and efficiency. In this paper, we present a novel hybrid strategy on top of them to achieve an overall success. It implements the unlearning operation with an acceptable computation cost, while simultaneously improving the accuracy as much as possible. Specifically, it runs reasonable unlearning techniques by estimating the retraining workloads caused by revocations. If the workload is lightweight, it performs retraining to derive the model parameters consistent with the accurate ones retrained from scratch. Otherwise, it outputs the unlearned model by directly modifying the current parameters, for better efficiency. In particular, to improve the accuracy in the latter case, we propose an optimized version to amend the output model with lightweight runtime penalty. We particularly study the boundary of two approaches in our frameworks to adaptively make the smart selection. Extensive experiments on real datasets validate that our proposals can improve the unlearning efficiency by 1.5$\times$ to 8$\times$ while achieving comparable accuracy.
Label-template based Few-Shot Text Classification with Contrastive Learning
Hou, Guanghua, Cao, Shuhui, Ouyang, Deqiang, Wang, Ning
As an algorithmic framework for learning to learn, meta-learning provides a promising solution for few-shot text classification. However, most existing research fail to give enough attention to class labels. Traditional basic framework building meta-learner based on prototype networks heavily relies on inter-class variance, and it is easily influenced by noise. To address these limitations, we proposes a simple and effective few-shot text classification framework. In particular, the corresponding label templates are embed into input sentences to fully utilize the potential value of class labels, guiding the pre-trained model to generate more discriminative text representations through the semantic information conveyed by labels. With the continuous influence of label semantics, supervised contrastive learning is utilized to model the interaction information between support samples and query samples. Furthermore, the averaging mechanism is replaced with an attention mechanism to highlight vital semantic information. To verify the proposed scheme, four typical datasets are employed to assess the performance of different methods. Experimental results demonstrate that our method achieves substantial performance enhancements and outperforms existing state-of-the-art models on few-shot text classification tasks.
Artificial Intelligence without Restriction Surpassing Human Intelligence with Probability One: Theoretical Insight into Secrets of the Brain with AI Twins of the Brain
Huang, Guang-Bin, Westover, M. Brandon, Tan, Eng-King, Wang, Haibo, Cui, Dongshun, Ma, Wei-Ying, Wang, Tiantong, He, Qi, Wei, Haikun, Wang, Ning, Tian, Qiyuan, Lam, Kwok-Yan, Yao, Xin, Wong, Tien Yin
Artificial Intelligence (AI) has apparently become one of the most important techniques discovered by humans in history while the human brain is widely recognized as one of the most complex systems in the universe. One fundamental critical question which would affect human sustainability remains open: Will artificial intelligence (AI) evolve to surpass human intelligence in the future? This paper shows that in theory new AI twins with fresh cellular level of AI techniques for neuroscience could approximate the brain and its functioning systems (e.g. perception and cognition functions) with any expected small error and AI without restrictions could surpass human intelligence with probability one in the end. This paper indirectly proves the validity of the conjecture made by Frank Rosenblatt 70 years ago about the potential capabilities of AI, especially in the realm of artificial neural networks. Intelligence is just one of fortuitous but sophisticated creations of the nature which has not been fully discovered. Like mathematics and physics, with no restrictions artificial intelligence would lead to a new subject with its self-contained systems and principles. We anticipate that this paper opens new doors for 1) AI twins and other AI techniques to be used in cellular level of efficient neuroscience dynamic analysis, functioning analysis of the brain and brain illness solutions; 2) new worldwide collaborative scheme for interdisciplinary teams concurrently working on and modelling different types of neurons and synapses and different level of functioning subsystems of the brain with AI techniques; 3) development of low energy of AI techniques with the aid of fundamental neuroscience properties; and 4) new controllable, explainable and safe AI techniques with reasoning capabilities of discovering principles in nature.