Goto

Collaborating Authors

 Wang, Miaomiao


A Null Space Compliance Approach for Maintaining Safety and Tracking Performance in Human-Robot Interactions

arXiv.org Artificial Intelligence

In recent years, the focus on developing robot manipulators has shifted towards prioritizing safety in Human-Robot Interaction (HRI). Impedance control is a typical approach for interaction control in collaboration tasks. However, such a control approach has two main limitations: 1) the end-effector (EE)'s limited compliance to adapt to unknown physical interactions, and 2) inability of the robot body to compliantly adapt to unknown physical interactions. In this work, we present an approach to address these drawbacks. We introduce a modified Cartesian impedance control method combined with a Dynamical System (DS)-based motion generator, aimed at enhancing the interaction capability of the EE without compromising main task tracking performance. This approach enables human coworkers to interact with the EE on-the-fly, e.g. tool changeover, after which the robot compliantly resumes its task. Additionally, combining with a new null space impedance control method enables the robot body to exhibit compliant behaviour in response to interactions, avoiding serious injuries from accidental contact while mitigating the impact on main task tracking performance. Finally, we prove the passivity of the system and validate the proposed approach through comprehensive comparative experiments on a 7 Degree-of-Freedom (DOF) KUKA LWR IV+ robot.


Punctate White Matter Lesion Segmentation in Preterm Infants Powered by Counterfactually Generative Learning

arXiv.org Artificial Intelligence

Accurate segmentation of punctate white matter lesions (PWMLs) are fundamental for the timely diagnosis and treatment of related developmental disorders. Automated PWMLs segmentation from infant brain MR images is challenging, considering that the lesions are typically small and low-contrast, and the number of lesions may dramatically change across subjects. Existing learning-based methods directly apply general network architectures to this challenging task, which may fail to capture detailed positional information of PWMLs, potentially leading to severe under-segmentations. In this paper, we propose to leverage the idea of counterfactual reasoning coupled with the auxiliary task of brain tissue segmentation to learn fine-grained positional and morphological representations of PWMLs for accurate localization and segmentation. A simple and easy-to-implement deep-learning framework (i.e., DeepPWML) is accordingly designed. It combines the lesion counterfactual map with the tissue probability map to train a lightweight PWML segmentation network, demonstrating state-of-the-art performance on a real-clinical dataset of infant T1w MR images.