Wang, Lu
Robust Positive-Unlabeled Learning via Noise Negative Sample Self-correction
Zhu, Zhangchi, Wang, Lu, Zhao, Pu, Du, Chao, Zhang, Wei, Dong, Hang, Qiao, Bo, Lin, Qingwei, Rajmohan, Saravan, Zhang, Dongmei
Learning from positive and unlabeled data is known as positive-unlabeled (PU) learning in literature and has attracted much attention in recent years. One common approach in PU learning is to sample a set of pseudo-negatives from the unlabeled data using ad-hoc thresholds so that conventional supervised methods can be applied with both positive and negative samples. Owing to the label uncertainty among the unlabeled data, errors of misclassifying unlabeled positive samples as negative samples inevitably appear and may even accumulate during the training processes. Those errors often lead to performance degradation and model instability. To mitigate the impact of label uncertainty and improve the robustness of learning with positive and unlabeled data, we propose a new robust PU learning method with a training strategy motivated by the nature of human learning: easy cases should be learned first. Similar intuition has been utilized in curriculum learning to only use easier cases in the early stage of training before introducing more complex cases. Specifically, we utilize a novel ``hardness'' measure to distinguish unlabeled samples with a high chance of being negative from unlabeled samples with large label noise. An iterative training strategy is then implemented to fine-tune the selection of negative samples during the training process in an iterative manner to include more ``easy'' samples in the early stage of training. Extensive experimental validations over a wide range of learning tasks show that this approach can effectively improve the accuracy and stability of learning with positive and unlabeled data. Our code is available at https://github.com/woriazzc/Robust-PU
Few-shot Reranking for Multi-hop QA via Language Model Prompting
Khalifa, Muhammad, Logeswaran, Lajanugen, Lee, Moontae, Lee, Honglak, Wang, Lu
We study few-shot reranking for multi-hop QA with open-domain questions. To alleviate the need for a large number of labeled question-document pairs for retriever training, we propose PromptRank, which relies on large language models prompting for multi-hop path reranking. PromptRank first constructs an instruction-based prompt that includes a candidate document path and then computes the relevance score between a given question and the path based on the conditional likelihood of the question given the path prompt according to a language model. PromptRank yields strong retrieval performance on HotpotQA with only 128 training examples compared to state-of-the-art methods trained on thousands of examples -- 73.6 recall@10 by PromptRank vs. 77.8 by PathRetriever and 77.5 by multi-hop dense retrieval. Code available at https://github.com/mukhal/PromptRank
Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations
Zhao, Tianxiang, Yu, Wenchao, Wang, Suhang, Wang, Lu, Zhang, Xiang, Chen, Yuncong, Liu, Yanchi, Cheng, Wei, Chen, Haifeng
Imitation learning has achieved great success in many sequential decision-making tasks, in which a neural agent is learned by imitating collected human demonstrations. However, existing algorithms typically require a large number of high-quality demonstrations that are difficult and expensive to collect. Usually, a trade-off needs to be made between demonstration quality and quantity in practice. Targeting this problem, in this work we consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set. Some pioneering works have been proposed, but they suffer from many limitations, e.g., assuming a demonstration to be of the same optimality throughout time steps and failing to provide any interpretation w.r.t knowledge learned from the noisy set. Addressing these problems, we propose {\method} by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills. Concretely, {\method} consists of a high-level controller to discover skills and a skill-conditioned module to capture action-taking policies, and is trained following a two-phase pipeline by first discovering skills with all demonstrations and then adapting the controller to only the clean set. A mutual-information-based regularization and a dynamic sub-demonstration optimality estimator are designed to promote disentanglement in the skill space. Extensive experiments are conducted over two gym environments and a real-world healthcare dataset to demonstrate the superiority of {\method} in learning from sub-optimal demonstrations and its improved interpretability by examining learned skills.
BOLT: Fast Energy-based Controlled Text Generation with Tunable Biases
Liu, Xin, Khalifa, Muhammad, Wang, Lu
Energy-based models (EBMs) have gained popularity for controlled text generation due to their high applicability to a wide range of constraints. However, sampling from EBMs is non-trivial, as it often requires a large number of iterations to converge to plausible text, which slows down the decoding process and makes it less practical for real-world applications. In this work, we propose BOLT, which relies on tunable biases to directly adjust the language model's output logits. Unlike prior work, BOLT maintains the generator's autoregressive nature to assert a strong control on token-wise conditional dependencies and overall fluency, and thus converges faster. When compared with state-of-the-arts on controlled generation tasks using both soft constraints (e.g., sentiment control) and hard constraints (e.g., keyword-guided topic control), BOLT demonstrates significantly improved efficiency and fluency. On sentiment control, BOLT is 7x faster than competitive baselines, and more fluent in 74.4% of the evaluation samples according to human judges.
Introspective Tips: Large Language Model for In-Context Decision Making
Chen, Liting, Wang, Lu, Dong, Hang, Du, Yali, Yan, Jie, Yang, Fangkai, Li, Shuang, Zhao, Pu, Qin, Si, Rajmohan, Saravan, Lin, Qingwei, Zhang, Dongmei
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Implementing Active Learning in Cybersecurity: Detecting Anomalies in Redacted Emails
Chung, Mu-Huan, Wang, Lu, Li, Sharon, Yang, Yuhong, Giang, Calvin, Jerath, Khilan, Raman, Abhay, Lie, David, Chignell, Mark
Research on email anomaly detection has typically relied on specially prepared datasets that may not adequately reflect the type of data that occurs in industry settings. In our research, at a major financial services company, privacy concerns prevented inspection of the bodies of emails and attachment details (although subject headings and attachment filenames were available). This made labeling possible anomalies in the resulting redacted emails more difficult. Another source of difficulty is the high volume of emails combined with the scarcity of resources making machine learning (ML) a necessity, but also creating a need for more efficient human training of ML models. Active learning (AL) has been proposed as a way to make human training of ML models more efficient. However, the implementation of Active Learning methods is a human-centered AI challenge due to potential human analyst uncertainty, and the labeling task can be further complicated in domains such as the cybersecurity domain (or healthcare, aviation, etc.) where mistakes in labeling can have highly adverse consequences. In this paper we present research results concerning the application of Active Learning to anomaly detection in redacted emails, comparing the utility of different methods for implementing active learning in this context. We evaluate different AL strategies and their impact on resulting model performance. We also examine how ratings of confidence that experts have in their labels can inform AL. The results obtained are discussed in terms of their implications for AL methodology and for the role of experts in model-assisted email anomaly screening.
Learning Cooperative Oversubscription for Cloud by Chance-Constrained Multi-Agent Reinforcement Learning
Sheng, Junjie, Wang, Lu, Yang, Fangkai, Qiao, Bo, Dong, Hang, Wang, Xiangfeng, Jin, Bo, Wang, Jun, Qin, Si, Rajmohan, Saravan, Lin, Qingwei, Zhang, Dongmei
Oversubscription is a common practice for improving cloud resource utilization. It allows the cloud service provider to sell more resources than the physical limit, assuming not all users would fully utilize the resources simultaneously. However, how to design an oversubscription policy that improves utilization while satisfying the some safety constraints remains an open problem. Existing methods and industrial practices are over-conservative, ignoring the coordination of diverse resource usage patterns and probabilistic constraints. To address these two limitations, this paper formulates the oversubscription for cloud as a chance-constrained optimization problem and propose an effective Chance Constrained Multi-Agent Reinforcement Learning (C2MARL) method to solve this problem. Specifically, C2MARL reduces the number of constraints by considering their upper bounds and leverages a multi-agent reinforcement learning paradigm to learn a safe and optimal coordination policy. We evaluate our C2MARL on an internal cloud platform and public cloud datasets. Experiments show that our C2MARL outperforms existing methods in improving utilization ($20\%\sim 86\%$) under different levels of safety constraints.
Late Fusion with Triplet Margin Objective for Multimodal Ideology Prediction and Analysis
Qiu, Changyuan, Wu, Winston, Zhang, Xinliang Frederick, Wang, Lu
Prior work on ideology prediction has largely focused on single modalities, i.e., text or images. In this work, we introduce the task of multimodal ideology prediction, where a model predicts binary or five-point scale ideological leanings, given a text-image pair with political content. We first collect five new large-scale datasets with English documents and images along with their ideological leanings, covering news articles from a wide range of US mainstream media and social media posts from Reddit and Twitter. We conduct in-depth analyses of news articles and reveal differences in image content and usage across the political spectrum. Furthermore, we perform extensive experiments and ablation studies, demonstrating the effectiveness of targeted pretraining objectives on different model components. Our best-performing model, a late-fusion architecture pretrained with a triplet objective over multimodal content, outperforms the state-of-the-art text-only model by almost 4% and a strong multimodal baseline with no pretraining by over 3%.
Time-aware Prompting for Text Generation
Cao, Shuyang, Wang, Lu
In this paper, we study the effects of incorporating timestamps, such as document creation dates, into generation systems. Two types of time-aware prompts are investigated: (1) textual prompts that encode document timestamps in natural language sentences; and (2) linear prompts that convert timestamps into continuous vectors. To explore extrapolation to future data points, we further introduce a new data-to-text generation dataset, TempWikiBio, containing more than 4 millions of chronologically ordered revisions of biographical articles from English Wikipedia, each paired with structured personal profiles. Through data-to-text generation on TempWikiBio, text-to-text generation on the content transfer dataset, and summarization on XSum, we show that linear prompts on encoder and textual prompts improve the generation quality on all datasets. Despite having less performance drop when testing on data drawn from a later time, linear prompts focus more on non-temporal information and are less sensitive to the given timestamps, according to human evaluations and sensitivity analyses. Meanwhile, textual prompts establish the association between the given timestamps and the output dates, yielding more factual temporal information in the output.
Generative Entity-to-Entity Stance Detection with Knowledge Graph Augmentation
Zhang, Xinliang Frederick, Beauchamp, Nick, Wang, Lu
Stance detection is typically framed as predicting the sentiment in a given text towards a target entity. However, this setup overlooks the importance of the source entity, i.e., who is expressing the opinion. In this paper, we emphasize the need for studying interactions among entities when inferring stances. We first introduce a new task, entity-to-entity (E2E) stance detection, which primes models to identify entities in their canonical names and discern stances jointly. To support this study, we curate a new dataset with 10,619 annotations labeled at the sentence-level from news articles of different ideological leanings. We present a novel generative framework to allow the generation of canonical names for entities as well as stances among them. We further enhance the model with a graph encoder to summarize entity activities and external knowledge surrounding the entities. Experiments show that our model outperforms strong comparisons by large margins. Further analyses demonstrate the usefulness of E2E stance detection for understanding media quotation and stance landscape, as well as inferring entity ideology.