Goto

Collaborating Authors

 Wang, Kun


A Survey on Trustworthy LLM Agents: Threats and Countermeasures

arXiv.org Artificial Intelligence

With the rapid evolution of Large Language Models (LLMs), LLM-based agents and Multi-agent Systems (MAS) have significantly expanded the capabilities of LLM ecosystems. This evolution stems from empowering LLMs with additional modules such as memory, tools, environment, and even other agents. However, this advancement has also introduced more complex issues of trustworthiness, which previous research focused solely on LLMs could not cover. In this survey, we propose the TrustAgent framework, a comprehensive study on the trustworthiness of agents, characterized by modular taxonomy, multi-dimensional connotations, and technical implementation. By thoroughly investigating and summarizing newly emerged attacks, defenses, and evaluation methods for agents and MAS, we extend the concept of Trustworthy LLM to the emerging paradigm of Trustworthy Agent. In TrustAgent, we begin by deconstructing and introducing various components of the Agent and MAS. Then, we categorize their trustworthiness into intrinsic (brain, memory, and tool) and extrinsic (user, agent, and environment) aspects. Subsequently, we delineate the multifaceted meanings of trustworthiness and elaborate on the implementation techniques of existing research related to these internal and external modules. Finally, we present our insights and outlook on this domain, aiming to provide guidance for future endeavors.


Benchmarking LLMs in Recommendation Tasks: A Comparative Evaluation with Conventional Recommenders

arXiv.org Artificial Intelligence

In recent years, integrating large language models (LLMs) into recommender systems has created new opportunities for improving recommendation quality. However, a comprehensive benchmark is needed to thoroughly evaluate and compare the recommendation capabilities of LLMs with traditional recommender systems. In this paper, we introduce RecBench, which systematically investigates various item representation forms (including unique identifier, text, semantic embedding, and semantic identifier) and evaluates two primary recommendation tasks, i.e., click-through rate prediction (CTR) and sequential recommendation (SeqRec). Our extensive experiments cover up to 17 large models and are conducted across five diverse datasets from fashion, news, video, books, and music domains. Our findings indicate that LLM-based recommenders outperform conventional recommenders, achieving up to a 5% AUC improvement in the CTR scenario and up to a 170% NDCG@10 improvement in the SeqRec scenario. However, these substantial performance gains come at the expense of significantly reduced inference efficiency, rendering the LLM-as-RS paradigm impractical for real-time recommendation environments. We aim for our findings to inspire future research, including recommendation-specific model acceleration methods. We will release our code, data, configurations, and platform to enable other researchers to reproduce and build upon our experimental results.


AgentSafe: Safeguarding Large Language Model-based Multi-agent Systems via Hierarchical Data Management

arXiv.org Artificial Intelligence

Large Language Model based multi-agent systems are revolutionizing autonomous communication and collaboration, yet they remain vulnerable to security threats like unauthorized access and data breaches. To address this, we introduce AgentSafe, a novel framework that enhances MAS security through hierarchical information management and memory protection. AgentSafe classifies information by security levels, restricting sensitive data access to authorized agents. AgentSafe incorporates two components: ThreatSieve, which secures communication by verifying information authority and preventing impersonation, and HierarCache, an adaptive memory management system that defends against unauthorized access and malicious poisoning, representing the first systematic defense for agent memory. Experiments across various LLMs show that AgentSafe significantly boosts system resilience, achieving defense success rates above 80% under adversarial conditions. Additionally, AgentSafe demonstrates scalability, maintaining robust performance as agent numbers and information complexity grow. Results underscore effectiveness of AgentSafe in securing MAS and its potential for real-world application.


Brain Foundation Models: A Survey on Advancements in Neural Signal Processing and Brain Discovery

arXiv.org Artificial Intelligence

Brain foundation models (BFMs) have emerged as a transformative paradigm in computational neuroscience, offering a revolutionary framework for processing diverse neural signals across different brain-related tasks. These models leverage large-scale pre-training techniques, allowing them to generalize effectively across multiple scenarios, tasks, and modalities, thus overcoming the traditional limitations faced by conventional artificial intelligence (AI) approaches in understanding complex brain data. By tapping into the power of pretrained models, BFMs provide a means to process neural data in a more unified manner, enabling advanced analysis and discovery in the field of neuroscience. In this survey, we define BFMs for the first time, providing a clear and concise framework for constructing and utilizing these models in various applications. We also examine the key principles and methodologies for developing these models, shedding light on how they transform the landscape of neural signal processing. This survey presents a comprehensive review of the latest advancements in BFMs, covering the most recent methodological innovations, novel views of application areas, and challenges in the field. Notably, we highlight the future directions and key challenges that need to be addressed to fully realize the potential of BFMs. These challenges include improving the quality of brain data, optimizing model architecture for better generalization, increasing training efficiency, and enhancing the interpretability and robustness of BFMs in real-world applications.


BeamVQ: Beam Search with Vector Quantization to Mitigate Data Scarcity in Physical Spatiotemporal Forecasting

arXiv.org Artificial Intelligence

In practice, physical spatiotemporal forecasting can suffer from data scarcity, because collecting large-scale data is non-trivial, especially for extreme events. Hence, we propose \method{}, a novel probabilistic framework to realize iterative self-training with new self-ensemble strategies, achieving better physical consistency and generalization on extreme events. Following any base forecasting model, we can encode its deterministic outputs into a latent space and retrieve multiple codebook entries to generate probabilistic outputs. Then BeamVQ extends the beam search from discrete spaces to the continuous state spaces in this field. We can further employ domain-specific metrics (e.g., Critical Success Index for extreme events) to filter out the top-k candidates and develop the new self-ensemble strategy by combining the high-quality candidates. The self-ensemble can not only improve the inference quality and robustness but also iteratively augment the training datasets during continuous self-training. Consequently, BeamVQ realizes the exploration of rare but critical phenomena beyond the original dataset. Comprehensive experiments on different benchmarks and backbones show that BeamVQ consistently reduces forecasting MSE (up to 39%), enhancing extreme events detection and proving its effectiveness in handling data scarcity.


CORBA: Contagious Recursive Blocking Attacks on Multi-Agent Systems Based on Large Language Models

arXiv.org Artificial Intelligence

Large Language Model-based Multi-Agent Systems (LLM-MASs) have demonstrated remarkable real-world capabilities, effectively collaborating to complete complex tasks. While these systems are designed with safety mechanisms, such as rejecting harmful instructions through alignment, their security remains largely unexplored. This gap leaves LLM-MASs vulnerable to targeted disruptions. In this paper, we introduce Contagious Recursive Blocking Attacks (Corba), a novel and simple yet highly effective attack that disrupts interactions between agents within an LLM-MAS. Corba leverages two key properties: its contagious nature allows it to propagate across arbitrary network topologies, while its recursive property enables sustained depletion of computational resources. Notably, these blocking attacks often involve seemingly benign instructions, making them particularly challenging to mitigate using conventional alignment methods. We evaluate Corba on two widely-used LLM-MASs, namely, AutoGen and Camel across various topologies and commercial models. Additionally, we conduct more extensive experiments in open-ended interactive LLM-MASs, demonstrating the effectiveness of Corba in complex topology structures and open-source models. Our code is available at: https://github.com/zhrli324/Corba.


InstructAgent: Building User Controllable Recommender via LLM Agent

arXiv.org Artificial Intelligence

Traditional recommender systems usually take the user-platform paradigm, where users are directly exposed under the control of the platform's recommendation algorithms. However, the defect of recommendation algorithms may put users in very vulnerable positions under this paradigm. First, many sophisticated models are often designed with commercial objectives in mind, focusing on the platform's benefits, which may hinder their ability to protect and capture users' true interests. Second, these models are typically optimized using data from all users, which may overlook individual user's preferences. Due to these shortcomings, users may experience several disadvantages under the traditional user-platform direct exposure paradigm, such as lack of control over the recommender system, potential manipulation by the platform, echo chamber effects, or lack of personalization for less active users due to the dominance of active users during collaborative learning. Therefore, there is an urgent need to develop a new paradigm to protect user interests and alleviate these issues. Recently, some researchers have introduced LLM agents to simulate user behaviors, these approaches primarily aim to optimize platform-side performance, leaving core issues in recommender systems unresolved. To address these limitations, we propose a new user-agent-platform paradigm, where agent serves as the protective shield between user and recommender system that enables indirect exposure. To this end, we first construct four recommendation datasets, denoted as $\dataset$, along with user instructions for each record.


DemonAgent: Dynamically Encrypted Multi-Backdoor Implantation Attack on LLM-based Agent

arXiv.org Artificial Intelligence

As LLM-based agents become increasingly prevalent, backdoors can be implanted into agents through user queries or environment feedback, raising critical concerns regarding safety vulnerabilities. However, backdoor attacks are typically detectable by safety audits that analyze the reasoning process of agents. To this end, we propose a novel backdoor implantation strategy called \textbf{Dynamically Encrypted Multi-Backdoor Implantation Attack}. Specifically, we introduce dynamic encryption, which maps the backdoor into benign content, effectively circumventing safety audits. To enhance stealthiness, we further decompose the backdoor into multiple sub-backdoor fragments. Based on these advancements, backdoors are allowed to bypass safety audits significantly. Additionally, we present AgentBackdoorEval, a dataset designed for the comprehensive evaluation of agent backdoor attacks. Experimental results across multiple datasets demonstrate that our method achieves an attack success rate nearing 100\% while maintaining a detection rate of 0\%, illustrating its effectiveness in evading safety audits. Our findings highlight the limitations of existing safety mechanisms in detecting advanced attacks, underscoring the urgent need for more robust defenses against backdoor threats. Code and data are available at https://github.com/whfeLingYu/DemonAgent.


MasRouter: Learning to Route LLMs for Multi-Agent Systems

arXiv.org Artificial Intelligence

Multi-agent systems (MAS) powered by Large Language Models (LLMs) have been demonstrated to push the boundaries of LLM capabilities, yet they often incur significant costs and face challenges in dynamic LLM selection. Current LLM routing methods effectively reduce overhead in single-agent scenarios by customizing LLM selection for each query, but they overlook the critical decisions regarding collaboration modes and agent roles in MAS. In response to this challenge, we first introduce the problem of Multi-Agent System Routing (MASR), which integrates all components of MAS into a unified routing framework. Toward this goal, we propose MasRouter, the first high-performing, cost-effective, and inductive MASR solution. MasRouter employs collaboration mode determination, role allocation, and LLM routing through a cascaded controller network, progressively constructing a MAS that balances effectiveness and efficiency. Extensive experiments demonstrate that MasRouter is (1) high-performing, achieving a $1.8\%\sim8.2\%$ improvement over the state-of-the-art method on MBPP; (2) economical, reducing overhead by up to $52.07\%$ compared to SOTA methods on HumanEval; and (3) plug-and-play, seamlessly integrating with mainstream MAS frameworks, reducing overhead by $17.21\%\sim28.17\%$ via customized routing. The code is available at https://github.com/yanweiyue/masrouter.


G-Safeguard: A Topology-Guided Security Lens and Treatment on LLM-based Multi-agent Systems

arXiv.org Artificial Intelligence

Large Language Model (LLM)-based Multi-agent Systems (MAS) have demonstrated remarkable capabilities in various complex tasks, ranging from collaborative problem-solving to autonomous decision-making. However, as these systems become increasingly integrated into critical applications, their vulnerability to adversarial attacks, misinformation propagation, and unintended behaviors have raised significant concerns. To address this challenge, we introduce G-Safeguard, a topology-guided security lens and treatment for robust LLM-MAS, which leverages graph neural networks to detect anomalies on the multi-agent utterance graph and employ topological intervention for attack remediation. Extensive experiments demonstrate that G-Safeguard: (I) exhibits significant effectiveness under various attack strategies, recovering over 40% of the performance for prompt injection; (II) is highly adaptable to diverse LLM backbones and large-scale MAS; (III) can seamlessly combine with mainstream MAS with security guarantees. The code is available at https://github.com/wslong20/G-safeguard.