Wang, James
Logarithmic Regret for Nonlinear Control
Wang, James, Lee, Bruce D., Ziemann, Ingvar, Matni, Nikolai
We address the problem of learning to control an unknown nonlinear dynamical system through sequential interactions. Motivated by high-stakes applications in which mistakes can be catastrophic, such as robotics and healthcare, we study situations where it is possible for fast sequential learning to occur. Fast sequential learning is characterized by the ability of the learning agent to incur logarithmic regret relative to a fully-informed baseline. We demonstrate that fast sequential learning is achievable in a diverse class of continuous control problems where the system dynamics depend smoothly on unknown parameters, provided the optimal control policy is persistently exciting. Additionally, we derive a regret bound which grows with the square root of the number of interactions for cases where the optimal policy is not persistently exciting. Our results provide the first regret bounds for controlling nonlinear dynamical systems depending nonlinearly on unknown parameters. We validate the trends our theory predicts in simulation on a simple dynamical system.
Moonshine: Speech Recognition for Live Transcription and Voice Commands
Jeffries, Nat, King, Evan, Kudlur, Manjunath, Nicholson, Guy, Wang, James, Warden, Pete
This paper introduces Moonshine, a family of speech recognition models optimized for live transcription and voice command processing. Moonshine is based on an encoder-decoder transformer architecture and employs Rotary Position Embedding (RoPE) instead of traditional absolute position embeddings. The model is trained on speech segments of various lengths, but without using zero-padding, leading to greater efficiency for the encoder during inference time. When benchmarked against OpenAI's Whisper tiny-en, Moonshine Tiny demonstrates a 5x reduction in compute requirements for transcribing a 10-second speech segment while incurring no increase in word error rates across standard evaluation datasets. These results highlight Moonshine's potential for real-time and resource-constrained applications.
RAFT: Realistic Attacks to Fool Text Detectors
Wang, James, Li, Ran, Yang, Junfeng, Mao, Chengzhi
Large language models (LLMs) have exhibited remarkable fluency across various tasks. However, their unethical applications, such as disseminating disinformation, have become a growing concern. Although recent works have proposed a number of LLM detection methods, their robustness and reliability remain unclear. In this paper, we present RAFT: a grammar error-free black-box attack against existing LLM detectors. In contrast to previous attacks for language models, our method exploits the transferability of LLM embeddings at the word-level while preserving the original text quality. We leverage an auxiliary embedding to greedily select candidate words to perturb against the target detector. Experiments reveal that our attack effectively compromises all detectors in the study across various domains by up to 99%, and are transferable across source models. Manual human evaluation studies show our attacks are realistic and indistinguishable from original human-written text. We also show that examples generated by RAFT can be used to train adversarially robust detectors. Our work shows that current LLM detectors are not adversarially robust, underscoring the urgent need for more resilient detection mechanisms.