Wang, Hongning
VPO: Aligning Text-to-Video Generation Models with Prompt Optimization
Cheng, Jiale, Lyu, Ruiliang, Gu, Xiaotao, Liu, Xiao, Xu, Jiazheng, Lu, Yida, Teng, Jiayan, Yang, Zhuoyi, Dong, Yuxiao, Tang, Jie, Wang, Hongning, Huang, Minlie
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.
Evaluating Intelligence via Trial and Error
Zhan, Jingtao, Zhao, Jiahao, Li, Jiayu, Liu, Yiqun, Zhang, Bo, Ai, Qingyao, Mao, Jiaxin, Wang, Hongning, Zhang, Min, Ma, Shaoping
Intelligence is a crucial trait for species to find solutions within a limited number of trial-and-error attempts. Building on this idea, we introduce Survival Game as a framework to evaluate intelligence based on the number of failed attempts in a trial-and-error process. Fewer failures indicate higher intelligence. When the expectation and variance of failure counts are both finite, it signals the ability to consistently find solutions to new challenges, which we define as the Autonomous Level of intelligence. Using Survival Game, we comprehensively evaluate existing AI systems. Our results show that while AI systems achieve the Autonomous Level in simple tasks, they are still far from it in more complex tasks, such as vision, search, recommendation, and language. While scaling current AI technologies might help, this would come at an astronomical cost. Projections suggest that achieving the Autonomous Level for general tasks would require $10^{26}$ parameters. To put this into perspective, loading such a massive model requires so many H100 GPUs that their total value is $10^{7}$ times that of Apple Inc.'s market value. Even with Moore's Law, supporting such a parameter scale would take $70$ years. This staggering cost highlights the complexity of human tasks and the inadequacies of current AI technologies. To further investigate this phenomenon, we conduct a theoretical analysis of Survival Game and its experimental results. Our findings suggest that human tasks possess a criticality property. As a result, Autonomous Level requires a deep understanding of the task's underlying mechanisms. Current AI systems, however, do not fully grasp these mechanisms and instead rely on superficial mimicry, making it difficult for them to reach an autonomous level. We believe Survival Game can not only guide the future development of AI but also offer profound insights into human intelligence.
Guiding not Forcing: Enhancing the Transferability of Jailbreaking Attacks on LLMs via Removing Superfluous Constraints
Yang, Junxiao, Zhang, Zhexin, Cui, Shiyao, Wang, Hongning, Huang, Minlie
Jailbreaking attacks can effectively induce unsafe behaviors in Large Language Models (LLMs); however, the transferability of these attacks across different models remains limited. This study aims to understand and enhance the transferability of gradient-based jailbreaking methods, which are among the standard approaches for attacking white-box models. Through a detailed analysis of the optimization process, we introduce a novel conceptual framework to elucidate transferability and identify superfluous constraints-specifically, the response pattern constraint and the token tail constraint-as significant barriers to improved transferability. Removing these unnecessary constraints substantially enhances the transferability and controllability of gradient-based attacks. Evaluated on Llama-3-8B-Instruct as the source model, our method increases the overall Transfer Attack Success Rate (T-ASR) across a set of target models with varying safety levels from 18.4% to 50.3%, while also improving the stability and controllability of jailbreak behaviors on both source and target models.
LongSafety: Evaluating Long-Context Safety of Large Language Models
Lu, Yida, Cheng, Jiale, Zhang, Zhexin, Cui, Shiyao, Wang, Cunxiang, Gu, Xiaotao, Dong, Yuxiao, Tang, Jie, Wang, Hongning, Huang, Minlie
As Large Language Models (LLMs) continue to advance in understanding and generating long sequences, new safety concerns have been introduced through the long context. However, the safety of LLMs in long-context tasks remains under-explored, leaving a significant gap in both evaluation and improvement of their safety. To address this, we introduce LongSafety, the first comprehensive benchmark specifically designed to evaluate LLM safety in open-ended long-context tasks. LongSafety encompasses 7 categories of safety issues and 6 user-oriented long-context tasks, with a total of 1,543 test cases, averaging 5,424 words per context. Our evaluation towards 16 representative LLMs reveals significant safety vulnerabilities, with most models achieving safety rates below 55%. Our findings also indicate that strong safety performance in short-context scenarios does not necessarily correlate with safety in long-context tasks, emphasizing the unique challenges and urgency of improving long-context safety. Moreover, through extensive analysis, we identify challenging safety issues and task types for long-context models. Furthermore, we find that relevant context and extended input sequences can exacerbate safety risks in long-context scenarios, highlighting the critical need for ongoing attention to long-context safety challenges. Our code and data are available at https://github.com/thu-coai/LongSafety.
AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement
Zhang, Zhexin, Lei, Leqi, Yang, Junxiao, Huang, Xijie, Lu, Yida, Cui, Shiyao, Chen, Renmiao, Zhang, Qinglin, Wang, Xinyuan, Wang, Hao, Li, Hao, Lei, Xianqi, Pan, Chengwei, Sha, Lei, Wang, Hongning, Huang, Minlie
As AI models are increasingly deployed across diverse real-world scenarios, ensuring their safety remains a critical yet underexplored challenge. While substantial efforts have been made to evaluate and enhance AI safety, the lack of a standardized framework and comprehensive toolkit poses significant obstacles to systematic research and practical adoption. To bridge this gap, we introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety. AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques while maintaining a well-structured and extensible codebase for future advancements. Additionally, we conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness. To facilitate ongoing research and development in AI safety, AISafetyLab is publicly available at https://github.com/thu-coai/AISafetyLab, and we are committed to its continuous maintenance and improvement.
HPSS: Heuristic Prompting Strategy Search for LLM Evaluators
Wen, Bosi, Ke, Pei, Sun, Yufei, Wang, Cunxiang, Gu, Xiaotao, Zhou, Jinfeng, Tang, Jie, Wang, Hongning, Huang, Minlie
Since the adoption of large language models (LLMs) for text evaluation has become increasingly prevalent in the field of natural language processing (NLP), a series of existing works attempt to optimize the prompts for LLM evaluators to improve their alignment with human judgment. However, their efforts are limited to optimizing individual factors of evaluation prompts, such as evaluation criteria or output formats, neglecting the combinatorial impact of multiple factors, which leads to insufficient optimization of the evaluation pipeline. Nevertheless, identifying well-behaved prompting strategies for adjusting multiple factors requires extensive enumeration. To this end, we comprehensively integrate 8 key factors for evaluation prompts and propose a novel automatic prompting strategy optimization method called Heuristic Prompting Strategy Search (HPSS). Inspired by the genetic algorithm, HPSS conducts an iterative search to find well-behaved prompting strategies for LLM evaluators. A heuristic function is employed to guide the search process, enhancing the performance of our algorithm. Extensive experiments across four evaluation tasks demonstrate the effectiveness of HPSS, consistently outperforming both human-designed evaluation prompts and existing automatic prompt optimization methods.
Parametric Retrieval Augmented Generation
Su, Weihang, Tang, Yichen, Ai, Qingyao, Yan, Junxi, Wang, Changyue, Wang, Hongning, Ye, Ziyi, Zhou, Yujia, Liu, Yiqun
Retrieval-augmented generation (RAG) techniques have emerged as a promising solution to enhance the reliability of large language models (LLMs) by addressing issues like hallucinations, outdated knowledge, and domain adaptation. In particular, existing RAG methods append relevant documents retrieved from external corpus or databases to the input of LLMs to guide their generation process, which we refer to as the in-context knowledge injection method. While this approach is simple and often effective, it has inherent limitations. Firstly, increasing the context length and number of relevant documents can lead to higher computational overhead and degraded performance, especially in complex reasoning tasks. More importantly, in-context knowledge injection operates primarily at the input level, but LLMs store their internal knowledge in their parameters. This gap fundamentally limits the capacity of in-context methods. To this end, we introduce Parametric retrieval-augmented generation (Parametric RAG), a new RAG paradigm that integrates external knowledge directly into the parameters of feed-forward networks (FFN) of an LLM through document parameterization. This approach not only saves online computational costs by eliminating the need to inject multiple documents into the LLMs' input context, but also deepens the integration of external knowledge into the parametric knowledge space of the LLM. Experimental results demonstrate that Parametric RAG substantially enhances both the effectiveness and efficiency of knowledge augmentation in LLMs. Also, it can be combined with in-context RAG methods to achieve even better performance. We have open-sourced all the code, data, and models in the following anonymized GitHub link: https://github.com/oneal2000/PRAG
MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science
Zhu, Erle, Liu, Yadi, Zhang, Zhe, Li, Xujun, Zhou, Jin, Yu, Xinjie, Huang, Minlie, Wang, Hongning
Pre-trained on extensive text and image corpora, current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks. However, their performance is still lacking in physical domains that require understanding diagrams with complex physical structures and quantitative analysis based on multi-modal information. To address this, we develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM. MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator. The PPM module is obtained by fine-tuning a visual language model using carefully designed synthetic data with paired physical diagrams and corresponding simulation language descriptions. At the inference stage, MAPS integrates the simulation language description of the input diagram provided by PPM and results obtained through a Chain-of-Simulation process with MLLM to derive the underlying rationale and the final answer. Validated using our collected college-level circuit analysis problems, MAPS significantly improves reasoning accuracy of MLLM and outperforms all existing models. The results confirm MAPS offers a promising direction for enhancing multi-modal scientific reasoning ability of MLLMs. We will release our code, model and dataset used for our experiments upon publishing of this paper.
Agent-SafetyBench: Evaluating the Safety of LLM Agents
Zhang, Zhexin, Cui, Shiyao, Lu, Yida, Zhou, Jingzhuo, Yang, Junxiao, Wang, Hongning, Huang, Minlie
As large language models (LLMs) are increasingly deployed as agents, their integration into interactive environments and tool use introduce new safety challenges beyond those associated with the models themselves. However, the absence of comprehensive benchmarks for evaluating agent safety presents a significant barrier to effective assessment and further improvement. In this paper, we introduce Agent-SafetyBench, a comprehensive benchmark designed to evaluate the safety of LLM agents. Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions. Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%. This highlights significant safety challenges in LLM agents and underscores the considerable need for improvement. Through quantitative analysis, we identify critical failure modes and summarize two fundamental safety detects in current LLM agents: lack of robustness and lack of risk awareness. Furthermore, our findings suggest that reliance on defense prompts alone is insufficient to address these safety issues, emphasizing the need for more advanced and robust strategies. We release Agent-SafetyBench at \url{https://github.com/thu-coai/Agent-SafetyBench} to facilitate further research and innovation in agent safety evaluation and improvement.
SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models
Cheng, Jiale, Liu, Xiao, Wang, Cunxiang, Gu, Xiaotao, Lu, Yida, Zhang, Dan, Dong, Yuxiao, Tang, Jie, Wang, Hongning, Huang, Minlie
Instruction-following is a fundamental capability of language models, requiring the model to recognize even the most subtle requirements in the instructions and accurately reflect them in its output. Such an ability is well-suited for and often optimized by preference learning. Such practice can introduce content variations irrelevant to whether the instruction is precisely followed (e.g., different expressions about the same semantic), interfering with the goal of teaching models to recognize the key differences that lead to improved instruction following. R, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs free from distractions. By playing against itself, an LLM employs a tree-search strategy to refine its previous responses with respect to the instruction while minimizing unnecessary variations. R demonstrates promising scalability and transferability, greatly enhancing models like GLM-4-9B and LLaMA3-70B. We also identify how inference scaling in tree search would impact model performance. Our code and data are publicly available at https://github.com/thu-coai/SPaR. Write a story and end it with "The devil is in the details." The is in the details. Figure 1: An example of the interfering factors (story content) in independently sampled multiple responses (Left). Refined response pairs exclude these factors, highlight the key difference (ending sentence), and lead to improved performance on iteratively trained LLaMA3-8B-Instruct (Right).