Wang, Hesheng
Leveraging Semantic Graphs for Efficient and Robust LiDAR SLAM
Wang, Neng, Lu, Huimin, Zheng, Zhiqiang, Wang, Hesheng, Liu, Yun-Hui, Chen, Xieyuanli
Accurate and robust simultaneous localization and mapping (SLAM) is crucial for autonomous mobile systems, typically achieved by leveraging the geometric features of the environment. Incorporating semantics provides a richer scene representation that not only enhances localization accuracy in SLAM but also enables advanced cognitive functionalities for downstream navigation and planning tasks. Existing point-wise semantic LiDAR SLAM methods often suffer from poor efficiency and generalization, making them less robust in diverse real-world scenarios. In this paper, we propose a semantic graph-enhanced SLAM framework, named SG-SLAM, which effectively leverages the geometric, semantic, and topological characteristics inherent in environmental structures. The semantic graph serves as a fundamental component that facilitates critical functionalities of SLAM, including robust relocalization during odometry failures, accurate loop closing, and semantic graph map construction. Our method employs a dual-threaded architecture, with one thread dedicated to online odometry and relocalization, while the other handles loop closure, pose graph optimization, and map update. This design enables our method to operate in real time and generate globally consistent semantic graph maps and point cloud maps. We extensively evaluate our method across the KITTI, MulRAN, and Apollo datasets, and the results demonstrate its superiority compared to state-of-the-art methods. Our method has been released at https://github.com/nubot-nudt/SG-SLAM.
Diffusion Stabilizer Policy for Automated Surgical Robot Manipulations
Ho, Chonlam, Hu, Jianshu, Wang, Hesheng, Dou, Qi, Ban, Yutong
Diffusion Stabilizer Policy for Automated Surgical Robot Manipulations Chonlam Ho 1,, Jianshu Hu 1,, Hesheng Wang 2, Qi Dou 3, and Y utong Ban 1 Abstract -- Intelligent surgical robots have the potential to revolutionize clinical practice by enabling more precise and automated surgical procedures. However, the automation of such robot for surgical tasks remains under-explored compared to recent advancements in solving household manipulation tasks. These successes have been largely driven by (1) advanced models, such as transformers and diffusion models, and (2) large-scale data utilization. Aiming to extend these successes to the domain of surgical robotics, we propose a diffusion-based policy learning framework, called Diffusion Stabilizer Policy (DSP), which enables training with imperfect or even failed trajectories. Our approach consists of two stages: first, we train the diffusion stabilizer policy using only clean data. Then, the policy is continuously updated using a mixture of clean and perturbed data, with filtering based on the prediction error on actions. Comprehensive experiments conducted in various surgical environments demonstrate the superior performance of our method in perturbation-free settings and its robustness when handling perturbed demonstrations.
KN-LIO: Geometric Kinematics and Neural Field Coupled LiDAR-Inertial Odometry
Wang, Zhong, Ren, Lele, Wen, Yue, Wang, Hesheng
Recent advancements in LiDAR-Inertial Odometry (LIO) have boosted a large amount of applications. However, traditional LIO systems tend to focus more on localization rather than mapping, with maps consisting mostly of sparse geometric elements, which is not ideal for downstream tasks. Recent emerging neural field technology has great potential in dense mapping, but pure LiDAR mapping is difficult to work on high-dynamic vehicles. To mitigate this challenge, we present a new solution that tightly couples geometric kinematics with neural fields to enhance simultaneous state estimation and dense mapping capabilities. We propose both semi-coupled and tightly coupled Kinematic-Neural LIO (KN-LIO) systems that leverage online SDF decoding and iterated error-state Kalman filtering to fuse laser and inertial data. Our KN-LIO minimizes information loss and improves accuracy in state estimation, while also accommodating asynchronous multi-LiDAR inputs. Evaluations on diverse high-dynamic datasets demonstrate that our KN-LIO achieves performance on par with or superior to existing state-of-the-art solutions in pose estimation and offers improved dense mapping accuracy over pure LiDAR-based methods. The relevant code and datasets will be made available at https://**.
Planning from Imagination: Episodic Simulation and Episodic Memory for Vision-and-Language Navigation
Pan, Yiyuan, Xu, Yunzhe, Liu, Zhe, Wang, Hesheng
Humans navigate unfamiliar environments using episodic simulation and episodic memory, which facilitate a deeper understanding of the complex relationships between environments and objects. Developing an imaginative memory system inspired by human mechanisms can enhance the navigation performance of embodied agents in unseen environments. However, existing Vision-and-Language Navigation (VLN) agents lack a memory mechanism of this kind. To address this, we propose a novel architecture that equips agents with a reality-imagination hybrid memory system. This system enables agents to maintain and expand their memory through both imaginative mechanisms and navigation actions. Additionally, we design tailored pre-training tasks to develop the agent's imaginative capabilities. Our agent can imagine high-fidelity RGB images for future scenes, achieving state-of-the-art result in Success rate weighted by Path Length (SPL).
3D Gaussian Splatting in Robotics: A Survey
Zhu, Siting, Wang, Guangming, Kong, Xin, Kong, Dezhi, Wang, Hesheng
Dense 3D representations of the environment have been a long-term goal in the robotics field. While previous Neural Radiance Fields (NeRF) representation have been prevalent for its implicit, coordinate-based model, the recent emergence of 3D Gaussian Splatting (3DGS) has demonstrated remarkable potential in its explicit radiance field representation. By leveraging 3D Gaussian primitives for explicit scene representation and enabling differentiable rendering, 3DGS has shown significant advantages over other radiance fields in real-time rendering and photo-realistic performance, which is beneficial for robotic applications. In this survey, we provide a comprehensive understanding of 3DGS in the field of robotics. We divide our discussion of the related works into two main categories: the application of 3DGS and the advancements in 3DGS techniques. In the application section, we explore how 3DGS has been utilized in various robotics tasks from scene understanding and interaction perspectives. The advance of 3DGS section focuses on the improvements of 3DGS own properties in its adaptability and efficiency, aiming to enhance its performance in robotics. We then summarize the most commonly used datasets and evaluation metrics in robotics. Finally, we identify the challenges and limitations of current 3DGS methods and discuss the future development of 3DGS in robotics.
PG-SLAM: Photo-realistic and Geometry-aware RGB-D SLAM in Dynamic Environments
Li, Haoang, Meng, Xiangqi, Zuo, Xingxing, Liu, Zhe, Wang, Hesheng, Cremers, Daniel
Simultaneous localization and mapping (SLAM) has achieved impressive performance in static environments. However, SLAM in dynamic environments remains an open question. Many methods directly filter out dynamic objects, resulting in incomplete scene reconstruction and limited accuracy of camera localization. The other works express dynamic objects by point clouds, sparse joints, or coarse meshes, which fails to provide a photo-realistic representation. To overcome the above limitations, we propose a photo-realistic and geometry-aware RGB-D SLAM method by extending Gaussian splatting. Our method is composed of three main modules to 1) map the dynamic foreground including non-rigid humans and rigid items, 2) reconstruct the static background, and 3) localize the camera. To map the foreground, we focus on modeling the deformations and/or motions. We consider the shape priors of humans and exploit geometric and appearance constraints of humans and items. For background mapping, we design an optimization strategy between neighboring local maps by integrating appearance constraint into geometric alignment. As to camera localization, we leverage both static background and dynamic foreground to increase the observations for noise compensation. We explore the geometric and appearance constraints by associating 3D Gaussians with 2D optical flows and pixel patches. Experiments on various real-world datasets demonstrate that our method outperforms state-of-the-art approaches in terms of camera localization and scene representation. Source codes will be publicly available upon paper acceptance.
EADReg: Probabilistic Correspondence Generation with Efficient Autoregressive Diffusion Model for Outdoor Point Cloud Registration
Gong, Linrui, Liu, Jiuming, Ma, Junyi, Liu, Lihao, Wang, Yaonan, Wang, Hesheng
Diffusion models have shown the great potential in the point cloud registration (PCR) task, especially for enhancing the robustness to challenging cases. However, existing diffusion-based PCR methods primarily focus on instance-level scenarios and struggle with outdoor LiDAR points, where the sparsity, irregularity, and huge point scale inherent in LiDAR points pose challenges to establishing dense global point-to-point correspondences. To address this issue, we propose a novel framework named EADReg for efficient and robust registration of LiDAR point clouds based on autoregressive diffusion models. EADReg follows a coarse-to-fine registration paradigm. In the coarse stage, we employ a Bi-directional Gaussian Mixture Model (BGMM) to reject outlier points and obtain purified point cloud pairs. BGMM establishes correspondences between the Gaussian Mixture Models (GMMs) from the source and target frames, enabling reliable coarse registration based on filtered features and geometric information. In the fine stage, we treat diffusion-based PCR as an autoregressive process to generate robust point correspondences, which are then iteratively refined on upper layers. Despite common criticisms of diffusion-based methods regarding inference speed, EADReg achieves runtime comparable to convolutional-based methods. Extensive experiments on the KITTI and NuScenes benchmark datasets highlight the state-of-the-art performance of our proposed method. Codes will be released upon publication.
Enhancing Exploratory Capability of Visual Navigation Using Uncertainty of Implicit Scene Representation
Wang, Yichen, Liu, Qiming, Liu, Zhe, Wang, Hesheng
In the context of visual navigation in unknown scenes, both "exploration" and "exploitation" are equally crucial. Robots must first establish environmental cognition through exploration and then utilize the cognitive information to accomplish target searches. However, most existing methods for image-goal navigation prioritize target search over the generation of exploratory behavior. To address this, we propose the Navigation with Uncertainty-driven Exploration (NUE) pipeline, which uses an implicit and compact scene representation, NeRF, as a cognitive structure. We estimate the uncertainty of NeRF and augment the exploratory ability by the uncertainty to in turn facilitate the construction of implicit representation. Simultaneously, we extract memory information from NeRF to enhance the robot's reasoning ability for determining the location of the target. Ultimately, we seamlessly combine the two generated abilities to produce navigational actions. Our pipeline is end-to-end, with the environmental cognitive structure being constructed online. Extensive experimental results on image-goal navigation demonstrate the capability of our pipeline to enhance exploratory behaviors, while also enabling a natural transition from the exploration to exploitation phase. This enables our model to outperform existing memory-based cognitive navigation structures in terms of navigation performance.
Direction-Constrained Control for Efficient Physical Human-Robot Interaction under Hierarchical Tasks
Xu, Mengxin, Wan, Weiwei, Wang, Hesheng, Harada, Kensuke
--This paper proposes a control method to address the physical Human-Robot Interaction (pHRI) challenge in the context of hierarchical tasks. A common approach to managing hierarchical tasks is Hierarchical Quadratic Programming (HQP), which, however, cannot be directly applied to human interaction due to its allowance of arbitrary velocity direction adjustments. T o resolve this limitation, we introduce the concept of directional constraints and develop a direction-constrained optimization algorithm to handle the nonlinearities induced by these constraints. The algorithm solves two sub-problems, minimizing the error and minimizing the deviation angle, in parallel, and combines the results of the two sub-problems to produce a final optimal outcome. The mutual influence between these two sub-problems is analyzed to determine the best parameter for combination. Additionally, the velocity objective in our control framework is computed using a variable admittance controller . Traditional admittance control does not account for constraints. T o address this issue, we propose a variable admittance control method to adjust control objectives dynamically. The method helps reduce the deviation between robot velocity and human intention at the constraint boundaries, thereby enhancing interaction efficiency. We evaluate the proposed method in scenarios where a human operator physically interacts with a 7-degree-of-freedom robotic arm. Compared to existing methods, our approach generates smoother robotic trajectories during interaction while avoiding interaction delays at the constraint boundaries. Recent advancements in physical Human-Robot Interaction (pHRI) have significantly improved robots' abilities to support individuals [1] [2]. For example, pHRI has shown promising results in tasks such as load transportation [3], collaborative drawing [4], surface polishing [5], assembly [6], rehabilitation [7], etc. This work was conducted while Mengxin Xu was a visiting researcher at Osaka University, Japan. It was partially supported by the Natural Science Foundation of China under Grant 62225309, 62073222, U21A20480 and U1913204. Mengxin Xu is with the Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail: mengxin xu@sjtu.edu.cn). Weiwei Wan and Kensuke Harada are with the Department of System Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-0043, Japan (e-mail: wan@sys.es.osaka-u.ac.jp, harada@sys.es.osaka-u.ac.jp). Hesheng Wang is with the Department of Automation, the Key Laboratory of System Control and Information Processing of Ministry of Education and the Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai Jiao Tong University, Shanghai 200240, China (email: wanghesheng@sjtu.edu.cn). In pHRI, the robot can reduce both the physical and cognitive load on humans, while humans contribute valuable guidance based on their experience.
Towards Autonomous Indoor Parking: A Globally Consistent Semantic SLAM System and A Semantic Localization Subsystem
Sha, Yichen, Zhu, Siting, Guo, Hekui, Wang, Zhong, Wang, Hesheng
We propose a globally consistent semantic SLAM system (GCSLAM) and a semantic-fusion localization subsystem (SF-Loc), which achieves accurate semantic mapping and robust localization in complex parking lots. Visual cameras (front-view and surround-view), IMU, and wheel encoder form the input sensor configuration of our system. The first part of our work is GCSLAM. GCSLAM introduces a novel factor graph for the optimization of poses and semantic map, which incorporates innovative error terms based on multi-sensor data and BEV (bird's-eye view) semantic information. Additionally, GCSLAM integrates a Global Slot Management module that stores and manages parking slot observations. SF-Loc is the second part of our work, which leverages the semantic map built by GCSLAM to conduct map-based localization. SF-Loc integrates registration results and odometry poses with a novel factor graph. Our system demonstrates superior performance over existing SLAM on two real-world datasets, showing excellent capabilities in robust global localization and precise semantic mapping.