Goto

Collaborating Authors

 Wang, Haofan


InstantIR: Blind Image Restoration with Instant Generative Reference

arXiv.org Artificial Intelligence

Handling test-time unknown degradation is the major challenge in Blind Image Restoration (BIR), necessitating high model generalization. An effective strategy is to incorporate prior knowledge, either from human input or generative model. In this paper, we introduce Instant-reference Image Restoration (InstantIR), a novel diffusion-based BIR method which dynamically adjusts generation condition during inference. We first extract a compact representation of the input via a pre-trained vision encoder. At each generation step, this representation is used to decode current diffusion latent and instantiate it in the generative prior. The degraded image is then encoded with this reference, providing robust generation condition. We observe the variance of generative references fluctuate with degradation intensity, which we further leverage as an indicator for developing a sampling algorithm adaptive to input quality. Extensive experiments demonstrate InstantIR achieves state-of-the-art performance and offering outstanding visual quality. Through modulating generative references with textual description, InstantIR can restore extreme degradation and additionally feature creative restoration.


Image Watermarks are Removable Using Controllable Regeneration from Clean Noise

arXiv.org Artificial Intelligence

Image watermark techniques provide an effective way to assert ownership, deter misuse, and trace content sources, which has become increasingly essential in the era of large generative models. A critical attribute of watermark techniques is their robustness against various manipulations. In this paper, we introduce a watermark removal approach capable of effectively nullifying the state of the art watermarking techniques. Our primary insight involves regenerating the watermarked image starting from a clean Gaussian noise via a controllable diffusion model, utilizing the extracted semantic and spatial features from the watermarked image. The semantic control adapter and the spatial control network are specifically trained to control the denoising process towards ensuring image quality and enhancing consistency between the cleaned image and the original watermarked image. To achieve a smooth trade-off between watermark removal performance and image consistency, we further propose an adjustable and controllable regeneration scheme. This scheme adds varying numbers of noise steps to the latent representation of the watermarked image, followed by a controlled denoising process starting from this noisy latent representation. As the number of noise steps increases, the latent representation progressively approaches clean Gaussian noise, facilitating the desired trade-off. We apply our watermark removal methods across various watermarking techniques, and the results demonstrate that our methods offer superior visual consistency/quality and enhanced watermark removal performance compared to existing regeneration approaches.


Unified Video-Language Pre-training with Synchronized Audio

arXiv.org Artificial Intelligence

Video-language pre-training is a typical and challenging problem that aims at learning visual and textual representations from large-scale data in a self-supervised way. Existing pre-training approaches either captured the correspondence of image-text pairs or utilized temporal ordering of frames. However, they do not explicitly explore the natural synchronization between audio and the other two modalities. In this work, we propose an enhanced framework for Video-Language pre-training with Synchronized Audio, termed as VLSA, that can learn tri-modal representations in a unified self-supervised transformer. Specifically, our VLSA jointly aggregates embeddings of local patches and global tokens for video, text, and audio. Furthermore, we utilize local-patch masked modeling to learn modality-aware features, and leverage global audio matching to capture audio-guided features for video and text. We conduct extensive experiments on retrieval across text, video, and audio. Our simple model pre-trained on only 0.9M data achieves improving results against state-of-the-art baselines. In addition, qualitative visualizations vividly showcase the superiority of our VLSA in learning discriminative visual-textual representations.


InstantID: Zero-shot Identity-Preserving Generation in Seconds

arXiv.org Artificial Intelligence

There has been significant progress in personalized image synthesis with methods such as Textual Inversion, DreamBooth, and LoRA. Yet, their real-world applicability is hindered by high storage demands, lengthy fine-tuning processes, and the need for multiple reference images. Conversely, existing ID embedding-based methods, while requiring only a single forward inference, face challenges: they either necessitate extensive fine-tuning across numerous model parameters, lack compatibility with community pre-trained models, or fail to maintain high face fidelity. Addressing these limitations, we introduce InstantID, a powerful diffusion model-based solution. Our plug-and-play module adeptly handles image personalization in various styles using just a single facial image, while ensuring high fidelity. To achieve this, we design a novel IdentityNet by imposing strong semantic and weak spatial conditions, integrating facial and landmark images with textual prompts to steer the image generation. InstantID demonstrates exceptional performance and efficiency, proving highly beneficial in real-world applications where identity preservation is paramount.


Split-Ensemble: Efficient OOD-aware Ensemble via Task and Model Splitting

arXiv.org Artificial Intelligence

Uncertainty estimation is crucial for machine learning models to detect out-of-distribution (OOD) inputs. However, the conventional discriminative deep learning classifiers produce uncalibrated closed-set predictions for OOD data. A more robust classifiers with the uncertainty estimation typically require a potentially unavailable OOD dataset for outlier exposure training, or a considerable amount of additional memory and compute to build ensemble models. In this work, we improve on uncertainty estimation without extra OOD data or additional inference costs using an alternative Split-Ensemble method. Specifically, we propose a novel subtask-splitting ensemble training objective, where a common multiclass classification task is split into several complementary subtasks. Then, each subtask's training data can be considered as OOD to the other subtasks. Diverse submodels can therefore be trained on each subtask with OOD-aware objectives. The subtask-splitting objective enables us to share low-level features across submodels to avoid parameter and computational overheads. In particular, we build a tree-like Split-Ensemble architecture by performing iterative splitting and pruning from a shared backbone model, where each branch serves as a submodel corresponding to a subtask. This leads to improved accuracy and uncertainty estimation across submodels under a fixed ensemble computation budget. Empirical study with ResNet-18 backbone shows Split-Ensemble, without additional computation cost, improves accuracy over a single model by 0.8%, 1.8%, and 25.5% on CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively. OOD detection for the same backbone and in-distribution datasets surpasses a single model baseline by, correspondingly, 2.2%, 8.1%, and 29.6% mean AUROC. Codes will be publicly available at https://antonioo-c.github.io/projects/split-ensemble


One-shot Implicit Animatable Avatars with Model-based Priors

arXiv.org Artificial Intelligence

Existing neural rendering methods for creating human avatars typically either require dense input signals such as video or multi-view images, or leverage a learned prior from large-scale specific 3D human datasets such that reconstruction can be performed with sparse-view inputs. Most of these methods fail to achieve realistic reconstruction when only a single image is available. To enable the data-efficient creation of realistic animatable 3D humans, we propose ELICIT, a novel method for learning human-specific neural radiance fields from a single image. Inspired by the fact that humans can effortlessly estimate the body geometry and imagine full-body clothing from a single image, we leverage two priors in ELICIT: 3D geometry prior and visual semantic prior. Specifically, ELICIT utilizes the 3D body shape geometry prior from a skinned vertex-based template model (i.e., SMPL) and implements the visual clothing semantic prior with the CLIP-based pretrained models. Both priors are used to jointly guide the optimization for creating plausible content in the invisible areas. Taking advantage of the CLIP models, ELICIT can use text descriptions to generate text-conditioned unseen regions. In order to further improve visual details, we propose a segmentation-based sampling strategy that locally refines different parts of the avatar. Comprehensive evaluations on multiple popular benchmarks, including ZJU-MoCAP, Human3.6M, and DeepFashion, show that ELICIT has outperformed strong baseline methods of avatar creation when only a single image is available. The code is public for research purposes at https://huangyangyi.github.io/ELICIT/.


Synthesizing Physically Plausible Human Motions in 3D Scenes

arXiv.org Artificial Intelligence

Synthesizing physically plausible human motions in 3D scenes is a challenging problem. Kinematics-based methods cannot avoid inherent artifacts (e.g., penetration and foot skating) due to the lack of physical constraints. Meanwhile, existing physics-based methods cannot generalize to multi-object scenarios since the policy trained with reinforcement learning has limited modeling capacity. In this work, we present a framework that enables physically simulated characters to perform long-term interaction tasks in diverse, cluttered, and unseen scenes. The key idea is to decompose human-scene interactions into two fundamental processes, Interacting and Navigating, which motivates us to construct two reusable Controller, i.e., InterCon and NavCon. Specifically, InterCon contains two complementary policies that enable characters to enter and leave the interacting state (e.g., sitting on a chair and getting up). To generate interaction with objects at different places, we further design NavCon, a trajectory following policy, to keep characters' locomotion in the free space of 3D scenes. Benefiting from the divide and conquer strategy, we can train the policies in simple environments and generalize to complex multi-object scenes. Experimental results demonstrate that our framework can synthesize physically plausible long-term human motions in complex 3D scenes. Code will be publicly released at https://github.com/liangpan99/InterScene.


Smoothed Geometry for Robust Attribution

arXiv.org Machine Learning

Feature attributions are a popular tool for explaining the behavior of Deep Neural Networks (DNNs), but have recently been shown to be vulnerable to attacks that produce divergent explanations for nearby inputs. This lack of robustness is especially problematic in high-stakes applications where adversarially-manipulated explanations could impair safety and trustworthiness. Building on a geometric understanding of these attacks presented in recent work, we identify Lipschitz continuity conditions on models' gradients that lead to robust gradient-based attributions, and observe that the smoothness of the model's decision surface is related to the transferability of attacks across multiple attribution methods. To mitigate these attacks in practice, we propose an inexpensive regularization method that promotes these conditions in DNNs, as well as a stochastic smoothing technique that does not require retraining. Our experiments on a range of image models demonstrate that both of these mitigations consistently improve attribution robustness, and confirm the role that smooth geometry plays in these attacks on real, large-scale models.


Contextual Local Explanation for Black Box Classifiers

arXiv.org Machine Learning

We introduce a new model-agnostic explanation technique which explains the prediction of any classifier called CLE. CLE gives an faithful and interpretable explanation to the prediction, by approximating the model locally using an interpretable model. We demonstrate the flexibility of CLE by explaining different models for text, tabular and image classification, and the fidelity of it by doing simulated user experiments.