Wang, Hangyu
Towards Efficient and Effective Unlearning of Large Language Models for Recommendation
Wang, Hangyu, Lin, Jianghao, Chen, Bo, Yang, Yang, Tang, Ruiming, Zhang, Weinan, Yu, Yong
The significant advancements in large language models (LLMs) give rise to a promising research direction, i.e., leveraging LLMs as recommenders (LLMRec). The efficacy of LLMRec arises from the open-world knowledge and reasoning capabilities inherent in LLMs. LLMRec acquires the recommendation capabilities through instruction tuning based on user interaction data. However, in order to protect user privacy and optimize utility, it is also crucial for LLMRec to intentionally forget specific user data, which is generally referred to as recommendation unlearning. In the era of LLMs, recommendation unlearning poses new challenges for LLMRec in terms of \textit{inefficiency} and \textit{ineffectiveness}. Existing unlearning methods require updating billions of parameters in LLMRec, which is costly and time-consuming. Besides, they always impact the model utility during the unlearning process. To this end, we propose \textbf{E2URec}, the first \underline{E}fficient and \underline{E}ffective \underline{U}nlearning method for LLM\underline{Rec}. Our proposed E2URec enhances the unlearning efficiency by updating only a few additional LoRA parameters, and improves the unlearning effectiveness by employing a teacher-student framework, where we maintain multiple teacher networks to guide the unlearning process. Extensive experiments show that E2URec outperforms state-of-the-art baselines on two real-world datasets. Specifically, E2URec can efficiently forget specific data without affecting recommendation performance. The source code is at \url{https://github.com/justarter/E2URec}.
DisCo: Towards Harmonious Disentanglement and Collaboration between Tabular and Semantic Space for Recommendation
Du, Kounianhua, Chen, Jizheng, Lin, Jianghao, Xi, Yunjia, Wang, Hangyu, Dai, Xinyi, Chen, Bo, Tang, Ruiming, Zhang, Weinan
Recommender systems play important roles in various applications such as e-commerce, social media, etc. Conventional recommendation methods usually model the collaborative signals within the tabular representation space. Despite the personalization modeling and the efficiency, the latent semantic dependencies are omitted. Methods that introduce semantics into recommendation then emerge, injecting knowledge from the semantic representation space where the general language understanding are compressed. However, existing semantic-enhanced recommendation methods focus on aligning the two spaces, during which the representations of the two spaces tend to get close while the unique patterns are discarded and not well explored. In this paper, we propose DisCo to Disentangle the unique patterns from the two representation spaces and Collaborate the two spaces for recommendation enhancement, where both the specificity and the consistency of the two spaces are captured. Concretely, we propose 1) a dual-side attentive network to capture the intra-domain patterns and the inter-domain patterns, 2) a sufficiency constraint to preserve the task-relevant information of each representation space and filter out the noise, and 3) a disentanglement constraint to avoid the model from discarding the unique information. These modules strike a balance between disentanglement and collaboration of the two representation spaces to produce informative pattern vectors, which could serve as extra features and be appended to arbitrary recommendation backbones for enhancement. Experiment results validate the superiority of our method against different models and the compatibility of DisCo over different backbones. Various ablation studies and efficiency analysis are also conducted to justify each model component.
FLIP: Towards Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction
Wang, Hangyu, Lin, Jianghao, Li, Xiangyang, Chen, Bo, Zhu, Chenxu, Tang, Ruiming, Zhang, Weinan, Yu, Yong
Click-through rate (CTR) prediction plays as a core function module in various personalized online services. The traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality, which capture the collaborative signals via feature interaction modeling. But the one-hot encoding discards the semantic information conceived in the original feature texts. Recently, the emergence of Pretrained Language Models (PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality obtained by hard prompt templates and adopts PLMs to extract the semantic knowledge. However, PLMs generally tokenize the input text data into subword tokens and ignore field-wise collaborative signals. Therefore, these two lines of research focus on different characteristics of the same input data (i.e., textual and tabular modalities), forming a distinct complementary relationship with each other. In this paper, we propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models (FLIP) for CTR prediction. We design a novel joint reconstruction pretraining task for both masked language and tabular modeling. Specifically, the masked data of one modality (i.e., tokens or features) has to be recovered with the help of the other modality, which establishes the feature-level interaction and alignment via sufficient mutual information extraction between dual modalities. Moreover, we propose to jointly finetune the ID-based model and PLM for downstream CTR prediction tasks, thus achieving superior performance by combining the advantages of both models. Extensive experiments on three real-world datasets demonstrate that FLIP outperforms SOTA baselines, and is highly compatible for various ID-based models and PLMs.
ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction
Lin, Jianghao, Chen, Bo, Wang, Hangyu, Xi, Yunjia, Qu, Yanru, Dai, Xinyi, Zhang, Kangning, Tang, Ruiming, Yu, Yong, Zhang, Weinan
Click-through rate (CTR) prediction has become increasingly indispensable for various Internet applications. Traditional CTR models convert the multi-field categorical data into ID features via one-hot encoding, and extract the collaborative signals among features. Such a paradigm suffers from the problem of semantic information loss. Another line of research explores the potential of pretrained language models (PLMs) for CTR prediction by converting input data into textual sentences through hard prompt templates. Although semantic signals are preserved, they generally fail to capture the collaborative information (e.g., feature interactions, pure ID features), not to mention the unacceptable inference overhead brought by the huge model size. In this paper, we aim to model both the semantic knowledge and collaborative knowledge for accurate CTR estimation, and meanwhile address the inference inefficiency issue. To benefit from both worlds and close their gaps, we propose a novel model-agnostic framework (i.e., ClickPrompt), where we incorporate CTR models to generate interaction-aware soft prompts for PLMs. We design a prompt-augmented masked language modeling (PA-MLM) pretraining task, where PLM has to recover the masked tokens based on the language context, as well as the soft prompts generated by CTR model. The collaborative and semantic knowledge from ID and textual features would be explicitly aligned and interacted via the prompt interface. Then, we can either tune the CTR model with PLM for superior performance, or solely tune the CTR model without PLM for inference efficiency. Experiments on four real-world datasets validate the effectiveness of ClickPrompt compared with existing baselines.