Goto

Collaborating Authors

 Wang, Ge


CLEA: Closed-Loop Embodied Agent for Enhancing Task Execution in Dynamic Environments

arXiv.org Artificial Intelligence

Large Language Models (LLMs) exhibit remarkable capabilities in the hierarchical decomposition of complex tasks through semantic reasoning. However, their application in embodied systems faces challenges in ensuring reliable execution of subtask sequences and achieving one-shot success in long-term task completion. To address these limitations in dynamic environments, we propose Closed-Loop Embodied Agent (CLEA) -- a novel architecture incorporating four specialized open-source LLMs with functional decoupling for closed-loop task management. The framework features two core innovations: (1) Interactive task planner that dynamically generates executable subtasks based on the environmental memory, and (2) Multimodal execution critic employing an evaluation framework to conduct a probabilistic assessment of action feasibility, triggering hierarchical re-planning mechanisms when environmental perturbations exceed preset thresholds. To validate CLEA's effectiveness, we conduct experiments in a real environment with manipulable objects, using two heterogeneous robots for object search, manipulation, and search-manipulation integration tasks. Across 12 task trials, CLEA outperforms the baseline model, achieving a 67.3% improvement in success rate and a 52.8% increase in task completion rate. These results demonstrate that CLEA significantly enhances the robustness of task planning and execution in dynamic environments.


Manifold Topological Deep Learning for Biomedical Data

arXiv.org Artificial Intelligence

Recently, topological deep learning (TDL), which integrates algebraic topology with deep neural networks, has achieved tremendous success in processing point-cloud data, emerging as a promising paradigm in data science. However, TDL has not been developed for data on differentiable manifolds, including images, due to the challenges posed by differential topology. We address this challenge by introducing manifold topological deep learning (MTDL) for the first time. To highlight the power of Hodge theory rooted in differential topology, we consider a simple convolutional neural network (CNN) in MTDL. In this novel framework, original images are represented as smooth manifolds with vector fields that are decomposed into three orthogonal components based on Hodge theory. These components are then concatenated to form an input image for the CNN architecture. The performance of MTDL is evaluated using the MedMNIST v2 benchmark database, which comprises 717,287 biomedical images from eleven 2D and six 3D datasets. MTDL significantly outperforms other competing methods, extending TDL to a wide range of data on smooth manifolds.


STMA: A Spatio-Temporal Memory Agent for Long-Horizon Embodied Task Planning

arXiv.org Artificial Intelligence

A key objective of embodied intelligence is enabling agents to perform long-horizon tasks in dynamic environments while maintaining robust decision-making and adaptability. To achieve this goal, we propose the Spatio-Temporal Memory Agent (STMA), a novel framework designed to enhance task planning and execution by integrating spatio-temporal memory. STMA is built upon three critical components: (1) a spatio-temporal memory module that captures historical and environmental changes in real time, (2) a dynamic knowledge graph that facilitates adaptive spatial reasoning, and (3) a planner-critic mechanism that iteratively refines task strategies. We evaluate STMA in the TextWorld environment on 32 tasks, involving multi-step planning and exploration under varying levels of complexity. Experimental results demonstrate that STMA achieves a 31.25% improvement in success rate and a 24.7% increase in average score compared to the state-of-the-art model. The results highlight the effectiveness of spatio-temporal memory in advancing the memory capabilities of embodied agents.


Evaluating Automated Radiology Report Quality through Fine-Grained Phrasal Grounding of Clinical Findings

arXiv.org Artificial Intelligence

While some metrics cover clinical entities and their relations[9, 11], generally Several evaluation metrics have been developed recently to scoring metrics do not explicitly capture the textual mention automatically assess the quality of generative AI reports for differences in the anatomy, laterality and severity. Further, chest radiographs based only on textual information using phrasal grounding of the findings in terms of anatomical localization lexical, semantic, or clinical named entity recognition methods. in images is not exploited in the quality scoring. In this paper, we develop a new method of report quality In this paper, we propose a metric that captures both finegrained evaluation by first extracting fine-grained finding patterns textual descriptions of findings as well as their phrasal capturing the location, laterality, and severity of a large number grounding information in terms of anatomical locations in images. of clinical findings. We then performed phrasal grounding We present results that compare this evaluation metric to localize their associated anatomical regions on chest radiograph to other textual metrics on a gold standard dataset derived images. The textual and visual measures are then combined from MIMIC collection of chest X-rays and validated reports, to rate the quality of the generated reports. We present to show its robustness and sensitivity to factual errors.


ECG-SleepNet: Deep Learning-Based Comprehensive Sleep Stage Classification Using ECG Signals

arXiv.org Artificial Intelligence

Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA Abstract --Accurate sleep stage classification is essential for understanding sleep disorders and improving overall health. This study proposes a novel three-stage approach for sleep stage classification using ECG signals, offering a more accessible alternative to traditional methods that often rely on complex modalities like EEG. In Stages 1 and 2, we initialize the weights of two networks, which are then integrated in Stage 3 for comprehensive classification. In the first phase, we estimate key features using Feature Imitating Networks (FINs) to achieve higher accuracy and faster convergence. The second phase focuses on identifying the N1 sleep stage through the time-frequency representation of ECG signals. Finally, the third phase integrates models from the previous stages and employs a Kolmogorov-Arnold Network (KAN) to classify five distinct sleep stages. Additionally, data augmentation techniques, particularly SMOTE, are used in enhancing classification capabilities for underrepresented stages like N1. Our results demonstrate significant improvements in the classification performance, with an overall accuracy of 80.79% an overall kappa of 0.73. The model achieves specific accuracies of 86.70% for Wake, 60.36% for N1, 83.89% for N2, 84.85% for N3, and 87.16% for REM. This study emphasizes the importance of weight initialization and data augmentation in optimizing sleep stage classification with ECG signals. Keywords: Sleep Stage Classification, Electrocardiogram, Kolmogorov-Arnold Networks, Liquid Neural Networks. Sleep disorders are a persistent challenge throughout the human history.


Pan-protein Design Learning Enables Task-adaptive Generalization for Low-resource Enzyme Design

arXiv.org Artificial Intelligence

Computational protein design (CPD) offers transformative potential for bioengineering, but current deep CPD models, focused on universal domains, struggle with function-specific designs. This work introduces a novel CPD paradigm tailored for functional design tasks, particularly for enzymes-a key protein class often lacking specific application efficiency. To address structural data scarcity, we present CrossDesign, a domain-adaptive framework that leverages pretrained protein language models (PPLMs). By aligning protein structures with sequences, CrossDesign transfers pretrained knowledge to structure models, overcoming the limitations of limited structural data. The framework combines autoregressive (AR) and non-autoregressive (NAR) states in its encoder-decoder architecture, applying it to enzyme datasets and pan-proteins. Experimental results highlight CrossDesign's superior performance and robustness, especially with out-of-domain enzymes. Additionally, the model excels in fitness prediction when tested on large-scale mutation data, showcasing its stability.


Enhancing Low Dose Computed Tomography Images Using Consistency Training Techniques

arXiv.org Artificial Intelligence

Diffusion models have significant impact on wide range of generative tasks, especially on image inpainting and restoration. Although the improvements on aiming for decreasing number of function evaluations (NFE), the iterative results are still computationally expensive. Consistency models are as a new family of generative models, enable single-step sampling of high quality data without the need for adversarial training. In this paper, we introduce the beta noise distribution, which provides flexibility in adjusting noise levels. This is combined with a sinusoidal curriculum that enhances the learning of the trajectory between the noise distribution and the posterior distribution of interest, allowing High Noise Improved Consistency Training (HN-iCT) to be trained in a supervised fashion. Additionally, High Noise Improved Consistency Training with Image Condition (HN-iCT-CN) architecture is introduced, enables to take Low Dose images as a condition for extracting significant features by Weighted Attention Gates (WAG).Our results indicate that unconditional image generation using HN-iCT significantly outperforms basic CT and iCT training techniques with NFE=1 on the CIFAR10 and CelebA datasets. Moreover, our image-conditioned model demonstrates exceptional performance in enhancing low-dose (LD) CT scans.


LAMA: Stable Dual-Domain Deep Reconstruction For Sparse-View CT

arXiv.org Artificial Intelligence

Inverse problems arise in many applications, especially tomographic imaging. We develop a Learned Alternating Minimization Algorithm (LAMA) to solve such problems via two-block optimization by synergizing data-driven and classical techniques with proven convergence. LAMA is naturally induced by a variational model with learnable regularizers in both data and image domains, parameterized as composite functions of neural networks trained with domain-specific data. We allow these regularizers to be nonconvex and nonsmooth to extract features from data effectively. We minimize the overall objective function using Nesterov's smoothing technique and residual learning architecture. It is demonstrated that LAMA reduces network complexity, improves memory efficiency, and enhances reconstruction accuracy, stability, and interpretability. Extensive experiments show that LAMA significantly outperforms state-of-the-art methods on popular benchmark datasets for Computed Tomography.


Development and Validation of a Dynamic-Template-Constrained Large Language Model for Generating Fully-Structured Radiology Reports

arXiv.org Artificial Intelligence

Current LLMs for creating fully-structured reports face the challenges of formatting errors, content hallucinations, and privacy leakage issues when uploading data to external servers.We aim to develop an open-source, accurate LLM for creating fully-structured and standardized LCS reports from varying free-text reports across institutions and demonstrate its utility in automatic statistical analysis and individual lung nodule retrieval. With IRB approvals, our retrospective study included 5,442 de-identified LDCT LCS radiology reports from two institutions. We constructed two evaluation datasets by labeling 500 pairs of free-text and fully-structured radiology reports and one large-scale consecutive dataset from January 2021 to December 2023. Two radiologists created a standardized template for recording 27 lung nodule features on LCS. We designed a dynamic-template-constrained decoding method to enhance existing LLMs for creating fully-structured reports from free-text radiology reports. Using consecutive structured reports, we automated descriptive statistical analyses and a nodule retrieval prototype. Our best LLM for creating fully-structured reports achieved high performance on cross-institutional datasets with an F1 score of about 97%, with neither formatting errors nor content hallucinations. Our method consistently improved the best open-source LLMs by up to 10.42%, and outperformed GPT-4o by 17.19%. The automatically derived statistical distributions were consistent with prior findings regarding attenuation, location, size, stability, and Lung-RADS. The retrieval system with structured reports allowed flexible nodule-level search and complex statistical analysis. Our developed software is publicly available for local deployment and further research.


Integrating AI in College Education: Positive yet Mixed Experiences with ChatGPT

arXiv.org Artificial Intelligence

The integration of artificial intelligence (AI) chatbots into higher education marks a shift towards a new generation of pedagogical tools, mirroring the arrival of milestones like the internet. With the launch of ChatGPT-4 Turbo in November 2023, we developed a ChatGPT-based teaching application (https://chat.openai.com/g/g-1imx1py4K-chatge-medical-imaging) and integrated it into our undergraduate medical imaging course in the Spring 2024 semester. This study investigates the use of ChatGPT throughout a semester-long trial, providing insights into students' engagement, perception, and the overall educational effectiveness of the technology. We systematically collected and analyzed data concerning students' interaction with ChatGPT, focusing on their attitudes, concerns, and usage patterns. The findings indicate that ChatGPT offers significant advantages such as improved information access and increased interactivity, but its adoption is accompanied by concerns about the accuracy of the information provided and the necessity for well-defined guidelines to optimize its use.