Wang, G. Gary
Hybrid Metaheuristic Vehicle Routing Problem for Security Dispatch Operations
Vu, Nguyen Gia Hien, Tang, Yifan, Lim, Rey, Wang, G. Gary
This paper investigates the optimization of the Vehicle Routing Problem for Security Dispatch (VRPSD). VRPSD focuses on security and patrolling applications which involve challenging constraints including precise timing and strict time windows. We propose three algorithms based on different metaheuristics, which are Adaptive Large Neighborhood Search (ALNS), Tabu Search (TS), and Threshold Accepting (TA). The first algorithm combines single-phase ALNS with TA, the second employs a multiphase ALNS with TA, and the third integrates multiphase ALNS, TS, and TA. Experiments are conducted on an instance comprising 251 customer requests. The results demonstrate that the third algorithm, the hybrid multiphase ALNS-TS-TA algorithm, delivers the best performance. This approach simultaneously leverages the large-area search capabilities of ALNS for exploration and effectively escapes local optima when the multiphase ALNS is coupled with TS and TA. Furthermore, in our experiments, the hybrid multiphase ALNS-TS-TA algorithm is the only one that shows potential for improving results with increased computation time across all attempts.
Selecting Subsets of Source Data for Transfer Learning with Applications in Metal Additive Manufacturing
Tang, Yifan, Dehaghani, M. Rahmani, Sajadi, Pouyan, Wang, G. Gary
ABSTRACT Considering data insufficiency in metal additive manufacturing (AM), transfer learning (TL) has been adopted to extract knowledge from source domains (e.g., completed printings) to improve the modeling performance in target domains (e.g., new printings). Current applications use all accessible source data directly in TL with no regard to the similarity between source and target data. This paper proposes a systematic method to find appropriate subsets of source data based on similarities between the source and target datasets for a given set of limited target domain data. Such similarity is characterized by the spatial and model distance metrics. A Pareto frontier-based source data selection method is developed, where the source data located on the Pareto frontier defined by two similarity distance metrics are selected iteratively. The method is integrated into an instance-based TL method (decision tree regression model) and a model-based TL method (fine-tuned artificial neural network). Both models are then tested on several regression tasks in metal AM. Comparison results demonstrate that 1) the source data selection method is general and supports integration with various TL methods and distance metrics, 2) compared with using all source data, the proposed method can find a small subset of source data from the same domain with better TL performance in metal AM regression tasks involving different processes and machines, and 3) when multiple source domains exist, the source data selection method could find the subset from one source domain to obtain comparable or better TL performance than the model constructed using data from all source domains. Keywords: metal additive manufacturing, transfer learning, source data selection, Pareto frontier 1 Introduction Metal additive manufacturing (AM) fabricates parts by depositing metal materials layer by layer with various heat sources, e.g., the laser beam and electric arc. Although metal AM has been adopted in electronics (Pang et al. 2020), automotive (Vasco 2021), aerospace (Blakey-Milner et al. 2021), and other industries, low productivity and unstable quality are two drawbacks that restrict the applications of metal AM. To alleviate the two drawbacks, constructing data-driven models to reveal correlations among processes, structures, and properties has attracted attention in both industry and academia. These models are built based on collected data from experiments or simulations and adopted for process optimization, control, or monitoring to improve the quality of printed parts.
Real-Time 2D Temperature Field Prediction in Metal Additive Manufacturing Using Physics-Informed Neural Networks
Sajadi, Pouyan, Dehaghani, Mostafa Rahmani, Tang, Yifan, Wang, G. Gary
Accurately predicting the temperature field in metal additive manufacturing (AM) processes is critical to preventing overheating, adjusting process parameters, and ensuring process stability. While physics-based computational models offer precision, they are often time-consuming and unsuitable for real-time predictions and online control in iterative design scenarios. Conversely, machine learning models rely heavily on high-quality datasets, which can be costly and challenging to obtain within the metal AM domain. Our work addresses this by introducing a physics-informed neural network framework specifically designed for temperature field prediction in metal AM. This framework incorporates a physics-informed input, physics-informed loss function, and a Convolutional Long Short-Term Memory (ConvLSTM) architecture. Utilizing real-time temperature data from the process, our model predicts 2D temperature fields for future timestamps across diverse geometries, deposition patterns, and process parameters. We validate the proposed framework in two scenarios: full-field temperature prediction for a thin wall and 2D temperature field prediction for cylinder and cubic parts, demonstrating errors below 3% and 1%, respectively. Our proposed framework exhibits the flexibility to be applied across diverse scenarios with varying process parameters, geometries, and deposition patterns.
Online Two-stage Thermal History Prediction Method for Metal Additive Manufacturing of Thin Walls
Tang, Yifan, Dehaghani, M. Rahmani, Sajadi, Pouyan, Balani, Shahriar Bakrani, Dhalpe, Akshay, Panicker, Suraj, Wu, Di, Coatanea, Eric, Wang, G. Gary
This paper aims to propose an online two-stage thermal history prediction method, which could be integrated into a metal AM process for performance control. Based on the similarity of temperature curves (curve segments of a temperature profile of one point) between any two successive layers, the first stage of the proposed method designs a layer-to-layer prediction model to estimate the temperature curves of the yet-to-print layer from measured temperatures of certain points on the previously printed layer. With measured/predicted temperature profiles of several points on the same layer, the second stage proposes a reduced order model (ROM) (intra-layer prediction model) to decompose and construct the temperature profiles of all points on the same layer, which could be used to build the temperature field of the entire layer. The training of ROM is performed with an extreme learning machine (ELM) for computational efficiency. Fifteen wire arc AM experiments and nine simulations are designed for thin walls with a fixed length and unidirectional printing of each layer. The test results indicate that the proposed prediction method could construct the thermal history of a yet-to-print layer within 0.1 seconds on a low-cost desktop computer. Meanwhile, the method has acceptable generalization capability in most cases from lower layers to higher layers in the same simulation, as well as from one simulation to a new simulation on different AM process parameters. More importantly, after fine-tuning the proposed method with limited experimental data, the relative errors of all predicted temperature profiles on a new experiment are smaller than 0.09, which demonstrates the applicability and generalization of the proposed two-stage thermal history prediction method in online applications for metal AM.
Comparison of Transfer Learning based Additive Manufacturing Models via A Case Study
Tang, Yifan, Dehaghani, M. Rahmani, Wang, G. Gary
Transfer learning (TL) based additive manufacturing (AM) modeling is an emerging field to reuse the data from historical products and mitigate the data insufficiency in modeling new products. Although some trials have been conducted recently, the inherent challenges of applying TL in AM modeling are seldom discussed, e.g., which source domain to use, how much target data is needed, and whether to apply data preprocessing techniques. This paper aims to answer those questions through a case study defined based on an open-source dataset about metal AM products. In the case study, five TL methods are integrated with decision tree regression (DTR) and artificial neural network (ANN) to construct six TL-based models, whose performances are then compared with the baseline DTR and ANN in a proposed validation framework. The comparisons are used to quantify the performance of applied TL methods and are discussed from the perspective of similarity, training data size, and data preprocessing. Finally, the source AM domain with larger qualitative similarity and a certain range of target-to-source training data size ratio are recommended. Besides, the data preprocessing should be performed carefully to balance the modeling performance and the performance improvement due to TL.