Goto

Collaborating Authors

 Wang, Fang


LexPro-1.0 Technical Report

arXiv.org Artificial Intelligence

In this report, we introduce our first-generation reasoning model, LexPro-1.0, a large language model designed for the highly specialized Chinese legal domain, offering comprehensive capabilities to meet diverse realistic needs. Existing legal LLMs face two primary challenges. Firstly, their design and evaluation are predominantly driven by computer science perspectives, leading to insufficient incorporation of legal expertise and logic, which is crucial for high-precision legal applications, such as handling complex prosecutorial tasks. Secondly, these models often underperform due to a lack of comprehensive training data from the legal domain, limiting their ability to effectively address real-world legal scenarios. To address this, we first compile millions of legal documents covering over 20 types of crimes from 31 provinces in China for model training. From the extensive dataset, we further select high-quality for supervised fine-tuning, ensuring enhanced relevance and precision. The model further undergoes large-scale reinforcement learning without additional supervision, emphasizing the enhancement of its reasoning capabilities and explainability. To validate its effectiveness in complex legal applications, we also conduct human evaluations with legal experts. We develop fine-tuned models based on DeepSeek-R1-Distilled versions, available in three dense configurations: 14B, 32B, and 70B.


DeFine: A Decomposed and Fine-Grained Annotated Dataset for Long-form Article Generation

arXiv.org Artificial Intelligence

Long-form article generation (LFAG) presents challenges such as maintaining logical consistency, comprehensive topic coverage, and narrative coherence across extended articles. Existing datasets often lack both the hierarchical structure and fine-grained annotation needed to effectively decompose tasks, resulting in shallow, disorganized article generation. To address these limitations, we introduce DeFine, a Decomposed and Fine-grained annotated dataset for long-form article generation. DeFine is characterized by its hierarchical decomposition strategy and the integration of domain-specific knowledge with multi-level annotations, ensuring granular control and enhanced depth in article generation. To construct the dataset, a multi-agent collaborative pipeline is proposed, which systematically segments the generation process into four parts: Data Miner, Cite Retreiver, Q&A Annotator and Data Cleaner. To validate the effectiveness of DeFine, we designed and tested three LFAG baselines: the web retrieval, the local retrieval, and the grounded reference. We fine-tuned the Qwen2-7b-Instruct model using the DeFine training dataset. The experimental results showed significant improvements in text quality, specifically in topic coverage, depth of information, and content fidelity. Our dataset publicly available to facilitate future research.


Elevating Legal LLM Responses: Harnessing Trainable Logical Structures and Semantic Knowledge with Legal Reasoning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved impressive results across numerous domains, yet they experience notable deficiencies in legal question-answering tasks. LLMs often generate generalized responses that lack the logical specificity required for expert legal advice and are prone to hallucination, providing answers that appear correct but are unreliable. Retrieval-Augmented Generation (RAG) techniques offer partial solutions to address this challenge, but existing approaches typically focus only on semantic similarity, neglecting the logical structure essential to legal reasoning. In this paper, we propose the Logical-Semantic Integration Model (LSIM), a novel supervised framework that bridges semantic and logical coherence. LSIM comprises three components: reinforcement learning predicts a structured fact-rule chain for each question, a trainable Deep Structured Semantic Model (DSSM) retrieves the most relevant candidate questions by integrating semantic and logical features, and in-context learning generates the final answer using the retrieved content. Our experiments on a real-world legal QA dataset-validated through both automated metrics and human evaluation-demonstrate that LSIM significantly enhances accuracy and reliability compared to existing methods.


Intelligent Legal Assistant: An Interactive Clarification System for Legal Question Answering

arXiv.org Artificial Intelligence

The rise of large language models has opened new avenues for users seeking legal advice. However, users often lack professional legal knowledge, which can lead to questions that omit critical information. This deficiency makes it challenging for traditional legal question-answering systems to accurately identify users' actual needs, often resulting in imprecise or generalized advice. In this work, we develop a legal question-answering system called Intelligent Legal Assistant, which interacts with users to precisely capture their needs. When a user poses a question, the system requests that the user select their geographical location to pinpoint the applicable laws. It then generates clarifying questions and options based on the key information missing from the user's initial question. This allows the user to select and provide the necessary details. Once all necessary information is provided, the system produces an in-depth legal analysis encompassing three aspects: overall conclusion, jurisprudential analysis, and resolution suggestions.


Knowledge Graph Enhanced Language Agents for Recommendation

arXiv.org Artificial Intelligence

Language agents have recently been used to simulate human behavior and user-item interactions for recommendation systems. However, current language agent simulations do not understand the relationships between users and items, leading to inaccurate user profiles and ineffective recommendations. In this work, we explore the utility of Knowledge Graphs (KGs), which contain extensive and reliable relationships between users and items, for recommendation. Our key insight is that the paths in a KG can capture complex relationships between users and items, eliciting the underlying reasons for user preferences and enriching user profiles. Leveraging this insight, we propose Knowledge Graph Enhanced Language Agents(KGLA), a framework that unifies language agents and KG for recommendation systems. In the simulated recommendation scenario, we position the user and item within the KG and integrate KG paths as natural language descriptions into the simulation. This allows language agents to interact with each other and discover sufficient rationale behind their interactions, making the simulation more accurate and aligned with real-world cases, thus improving recommendation performance. Our experimental results show that KGLA significantly improves recommendation performance (with a 33%-95% boost in NDCG@1 among three widely used benchmarks) compared to the previous best baseline method.


$M^3EL$: A Multi-task Multi-topic Dataset for Multi-modal Entity Linking

arXiv.org Artificial Intelligence

Multi-modal Entity Linking (MEL) is a fundamental component for various downstream tasks. However, existing MEL datasets suffer from small scale, scarcity of topic types and limited coverage of tasks, making them incapable of effectively enhancing the entity linking capabilities of multi-modal models. To address these obstacles, we propose a dataset construction pipeline and publish $M^3EL$, a large-scale dataset for MEL. $M^3EL$ includes 79,625 instances, covering 9 diverse multi-modal tasks, and 5 different topics. In addition, to further improve the model's adaptability to multi-modal tasks, We propose a modality-augmented training strategy. Utilizing $M^3EL$ as a corpus, train the $\textit{CLIP}_{\textit{ND}}$ model based on $\textit{CLIP} (\textit{ViT}-\textit{B}-\textit{32})$, and conduct a comparative analysis with an existing multi-modal baselines. Experimental results show that the existing models perform far below expectations (ACC of 49.4%-75.8%), After analysis, it was obtained that small dataset sizes, insufficient modality task coverage, and limited topic diversity resulted in poor generalisation of multi-modal models. Our dataset effectively addresses these issues, and the $\textit{CLIP}_{\textit{ND}}$ model fine-tuned with $M^3EL$ shows a significant improvement in accuracy, with an average improvement of 9.3% to 25% across various tasks. Our dataset is available at https://anonymous.4open.science/r/M3EL.


Semi-strong Efficient Market of Bitcoin and Twitter: an Analysis of Semantic Vector Spaces of Extracted Keywords and Light Gradient Boosting Machine Models

arXiv.org Artificial Intelligence

This study extends the examination of the Efficient-Market Hypothesis in Bitcoin market during a five year fluctuation period, from September 1 2017 to September 1 2022, by analyzing 28,739,514 qualified tweets containing the targeted topic "Bitcoin". Unlike previous studies, we extracted fundamental keywords as an informative proxy for carrying out the study of the EMH in the Bitcoin market rather than focusing on sentiment analysis, information volume, or price data. We tested market efficiency in hourly, 4-hourly, and daily time periods to understand the speed and accuracy of market reactions towards the information within different thresholds. A sequence of machine learning methods and textual analyses were used, including measurements of distances of semantic vector spaces of information, keywords extraction and encoding model, and Light Gradient Boosting Machine (LGBM) classifiers. Our results suggest that 78.06% (83.08%), 84.63% (87.77%), and 94.03% (94.60%) of hourly, 4-hourly, and daily bullish (bearish) market movements can be attributed to public information within organic tweets.


A Visualized Malware Detection Framework with CNN and Conditional GAN

arXiv.org Artificial Intelligence

Malware visualization analysis incorporating with Machine Learning (ML) has been proven to be a promising solution for improving security defenses on different platforms. In this work, we propose an integrated framework for addressing common problems experienced by ML utilizers in developing malware detection systems. Namely, a pictorial presentation system with extensions is designed to preserve the identities of benign/malign samples by encoding each variable into binary digits and mapping them into black and white pixels. A conditional Generative Adversarial Network based model is adopted to produce synthetic images and mitigate issues of imbalance classes. Detection models architected by Convolutional Neural Networks are for validating performances while training on datasets with and without artifactual samples. Result demonstrates accuracy rates of 98.51% and 97.26% for these two training scenarios.


Graph Neural Prompting with Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown remarkable generalization capability with exceptional performance in various language modeling tasks. However, they still exhibit inherent limitations in precisely capturing and returning grounded knowledge. While existing work has explored utilizing knowledge graphs (KGs) to enhance language modeling via joint training and customized model architectures, applying this to LLMs is problematic owing to their large number of parameters and high computational cost. Therefore, how to enhance pre-trained LLMs using grounded knowledge, e.g., retrieval-augmented generation, remains an open question. In this work, we propose Graph Neural Prompting (GNP), a novel plug-and-play method to assist pre-trained LLMs in learning beneficial knowledge from KGs. GNP encompasses various designs, including a standard graph neural network encoder, a cross-modality pooling module, a domain projector, and a self-supervised link prediction objective. Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks across different LLM sizes and settings. Code is available at https://github.com/meettyj/GNP.


Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning

arXiv.org Artificial Intelligence

Multiple defendants in a criminal fact description generally exhibit complex interactions, and cannot be well handled by existing Legal Judgment Prediction (LJP) methods which focus on predicting judgment results (e.g., law articles, charges, and terms of penalty) for single-defendant cases. To address this problem, we propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases. Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation. To tackle the first challenge, we formalize the multi-defendant judgment process as hierarchical reasoning chains and introduce a multi-defendant LJP method, named Hierarchical Reasoning Network (HRN), which follows the hierarchical reasoning chains to determine criminal relationships, sentencing circumstances, law articles, charges, and terms of penalty for each defendant. To tackle the second challenge, we collect a real-world multi-defendant LJP dataset, namely MultiLJP, to accelerate the relevant research in the future. Extensive experiments on MultiLJP verify the effectiveness of our proposed HRN.