Goto

Collaborating Authors

 Wang, Dingzirui


MULTITAT: Benchmarking Multilingual Table-and-Text Question Answering

arXiv.org Artificial Intelligence

Question answering on the hybrid context of tables and text (TATQA) is a critical task, with broad applications in data-intensive domains. However, existing TATQA datasets are limited to English, leading to several drawbacks: (i) They overlook the challenges of multilingual TAT-QA and cannot assess model performance in the multilingual setting. (ii) They do not reflect real-world scenarios where tables and texts frequently appear in non-English languages. To address the limitations, we propose the first multilingual TATQA dataset (MULTITAT). Specifically, we sample data from 3 mainstream TATQA datasets and translate it into 10 diverse languages. To align the model TATQA capabilities in English with other languages, we develop a baseline, Ours. Experimental results reveal that the performance on non-English data in MULTITAT drops by an average of 19.4% compared to English, proving the necessity of MULTITAT. We further analyze the reasons for this performance gap. Furthermore, Ours outperforms other baselines by an average of 3.3, demonstrating its effectiveness.


SCITAT: A Question Answering Benchmark for Scientific Tables and Text Covering Diverse Reasoning Types

arXiv.org Artificial Intelligence

Scientific question answering (SQA) is an important task aimed at answering questions based on papers. However, current SQA datasets have limited reasoning types and neglect the relevance between tables and text, creating a significant gap with real scenarios. To address these challenges, we propose a QA benchmark for scientific tables and text with diverse reasoning types (SciTaT). To cover more reasoning types, we summarize various reasoning types from real-world questions. To involve both tables and text, we require the questions to incorporate tables and text as much as possible. Based on SciTaT, we propose a strong baseline (CaR), which combines various reasoning methods to address different reasoning types and process tables and text at the same time. CaR brings average improvements of 12.9% over other baselines on SciTaT, validating its effectiveness. Error analysis reveals the challenges of SciTaT, such as complex numerical calculations and domain knowledge.


Can Large Language Models Understand You Better? An MBTI Personality Detection Dataset Aligned with Population Traits

arXiv.org Artificial Intelligence

The Myers-Briggs Type Indicator (MBTI) is one of the most influential personality theories reflecting individual differences in thinking, feeling, and behaving. MBTI personality detection has garnered considerable research interest and has evolved significantly over the years. However, this task tends to be overly optimistic, as it currently does not align well with the natural distribution of population personality traits. Specifically, (1) the self-reported labels in existing datasets result in incorrect labeling issues, and (2) the hard labels fail to capture the full range of population personality distributions. In this paper, we optimize the task by constructing MBTIBench, the first manually annotated high-quality MBTI personality detection dataset with soft labels, under the guidance of psychologists. As for the first challenge, MBTIBench effectively solves the incorrect labeling issues, which account for 29.58% of the data. As for the second challenge, we estimate soft labels by deriving the polarity tendency of samples. The obtained soft labels confirm that there are more people with non-extreme personality traits. Experimental results not only highlight the polarized predictions and biases in LLMs as key directions for future research, but also confirm that soft labels can provide more benefits to other psychological tasks than hard labels. The code and data are available at https://github.com/Personality-NLP/MbtiBench.


In-Context Transfer Learning: Demonstration Synthesis by Transferring Similar Tasks

arXiv.org Artificial Intelligence

In-context learning (ICL) is an effective approach to help large language models (LLMs) adapt to various tasks by providing demonstrations of the target task. Considering the high cost of labeling demonstrations, many methods propose synthesizing demonstrations from scratch using LLMs. However, the quality of the demonstrations synthesized from scratch is limited by the capabilities and knowledge of LLMs. To address this, inspired by transfer learning, we propose In-Context Transfer Learning (ICTL), which synthesizes target task demonstrations by transferring labeled demonstrations from similar source tasks. ICTL consists of two steps: source sampling and target transfer. First, we define an optimization objective, which minimizes transfer error to sample source demonstrations similar to the target task. Then, we employ LLMs to transfer the sampled source demonstrations to the target task, matching the definition and format of the target task. Experiments on Super-NI show that ICTL outperforms synthesis from scratch by 2.0% on average, demonstrating the effectiveness of our method In-context learning (ICL) is an effective approach for large language models (LLMs) to adapt to various tasks based on the brilliant generalize ability of LLMs (Xun et al., 2017; Song et al., 2023b; Luo et al., 2024a). During the inference with ICL, input not only includes user questions but also several demonstrations to guide LLMs in generating answers correctly. Considering the high cost of demonstration labeling, many methods utilize LLMs to synthesize demonstrations from scratch without human involvement (Kim et al., 2022; Jin & Lu, 2024). For instance, Self-ICL (Chen et al., 2023b) employs LLMs to synthesize demonstration based on the task definition, while Su et al. (2024) improves the synthesis through iterations, where each iteration uses the previous results. However, the synthesis using LLMs from scratch is constrained by the capabilities and knowledge of LLMs, limiting the quality of the synthesized demonstrations (Yu et al., 2023).


Enhancing Numerical Reasoning with the Guidance of Reliable Reasoning Processes

arXiv.org Artificial Intelligence

Numerical reasoning is an essential ability for NLP systems to handle numeric information. Recent research indicates that fine-tuning a small-scale model to learn generating reasoning processes alongside answers can significantly enhance performance. However, current methods have the limitation that most methods generate reasoning processes with large language models (LLMs), which are "unreliable" since such processes could contain information unrelated to the answer. To address this limitation, we introduce Enhancing NumeriCal reasOning with Reliable procEsses (Encore), which derives the reliable reasoning process by decomposing the answer formula, ensuring which fully supports the answer. Nevertheless, models could lack enough data to learn the reasoning process generation adequately, since our method generates only one single reasoning process for one formula. To overcome this difficulty, we present a series of pre-training tasks to help models learn the reasoning process generation with synthesized data. The experiments show that Encore yields improvement on all five experimental datasets with an average of 1.8%, proving the effectiveness of our method.


Improving Demonstration Diversity by Human-Free Fusing for Text-to-SQL

arXiv.org Artificial Intelligence

Currently, the in-context learning method based on large language models (LLMs) has become the mainstream of text-to-SQL research. Previous works have discussed how to select demonstrations related to the user question from a human-labeled demonstration pool. However, human labeling suffers from the limitations of insufficient diversity and high labeling overhead. Therefore, in this paper, we discuss how to measure and improve the diversity of the demonstrations for text-to-SQL. We present a metric to measure the diversity of the demonstrations and analyze the insufficient of the existing labeled data by experiments. Based on the above discovery, we propose fusing iteratively for demonstrations (Fused) to build a high-diversity demonstration pool through human-free multiple-iteration synthesis, improving diversity and lowering label cost. Our method achieves an average improvement of 3.2% and 5.0% with and without human labeling on several mainstream datasets, which proves the effectiveness of Fused.


Multi-Hop Table Retrieval for Open-Domain Text-to-SQL

arXiv.org Artificial Intelligence

Open-domain text-to-SQL is an important task that retrieves question-relevant tables from massive databases and then generates SQL. However, existing retrieval methods that retrieve in a single hop do not pay attention to the text-to-SQL challenge of schema linking, which is aligning the entities in the question with table entities, reflected in two aspects: similar irrelevant entity and domain mismatch entity. Therefore, we propose our method, the multi-hop table retrieval with rewrite and beam search (Murre). To reduce the effect of the similar irrelevant entity, our method focuses on unretrieved entities at each hop and considers the low-ranked tables by beam search. To alleviate the limitation of domain mismatch entity, Murre rewrites the question based on retrieved tables in multiple hops, decreasing the domain gap with relevant tables. We conduct experiments on SpiderUnion and BirdUnion+, reaching new state-of-the-art results with an average improvement of 6.38%.


A Survey of Table Reasoning with Large Language Models

arXiv.org Artificial Intelligence

Table reasoning, which aims to generate the corresponding answer to the question following the user requirement according to the provided table, and optionally a text description of the table, effectively improving the efficiency of obtaining information. Recently, using Large Language Models (LLMs) has become the mainstream method for table reasoning, because it not only significantly reduces the annotation cost but also exceeds the performance of previous methods. However, existing research still lacks a summary of LLM-based table reasoning works. Due to the existing lack of research, questions about which techniques can improve table reasoning performance in the era of LLMs, why LLMs excel at table reasoning, and how to enhance table reasoning abilities in the future, remain largely unexplored. This gap significantly limits progress in research. To answer the above questions and advance table reasoning research with LLMs, we present this survey to analyze existing research, inspiring future work. In this paper, we analyze the mainstream techniques used to improve table reasoning performance in the LLM era, and the advantages of LLMs compared to pre-LLMs for solving table reasoning. We provide research directions from both the improvement of existing methods and the expansion of practical applications to inspire future research.


Exploring Equation as a Better Intermediate Meaning Representation for Numerical Reasoning

arXiv.org Artificial Intelligence

Numerical reasoning is vital for natural language processing models to understand and process numerical information in real-world scenarios. Most current methods first generate the Intermediate Meaning Representations (IMRs) of questions and then generate answers. Current SOTA methods generate programs as IMRs with large language models (LLMs). Intuitively, equations have fewer restrictions and closer semantics to the question than programs, leading to higher generation accuracy. However, current LLMs generate equations worse than programs, where we assume that the equation data is rare in pre-training data compared to programs. So in this paper, we try to use equations as IMRs to solve the numerical reasoning task by addressing two problems: (1) Theoretically, how to prove that the equation is an IMR with higher generation accuracy than programs; (2) Empirically, how to improve the generation accuracy of equations with LLMs. For the first problem, we propose and prove a proposition to theoretically compare the generation accuracy of different IMRs. For the second problem, we present a method called Boosting Numerical Reason\textbfing by Decomposing the Generation of Equations (Bridge), which can improve the accuracy of LLMs in generating equations as IMRs by reducing the tendency of generating constant expressions and programs. Our method improves the performance by 2.2%, 0.9%, and 1.7% on GSM8K, SVAMP, and Algebra datasets compared to the previous state-of-the-art methods under the single reasoning path setting. Our codes and prompts are released in https://github.com/zirui-HIT/Bridge_for_Numerical_Reasoning.


A Survey on Table-and-Text HybridQA: Concepts, Methods, Challenges and Future Directions

arXiv.org Artificial Intelligence

Table-and-text hybrid question answering (HybridQA) is a widely used and challenging NLP task commonly applied in the financial and scientific domain. The early research focuses on migrating other QA task methods to HybridQA, while with further research, more and more HybridQA-specific methods have been present. With the rapid development of HybridQA, the systematic survey is still under-explored to summarize the main techniques and advance further research. So we present this work to summarize the current HybridQA benchmarks and methods, then analyze the challenges and future directions of this task. The contributions of this paper can be summarized in three folds: (1) first survey, to our best knowledge, including benchmarks, methods and challenges for HybridQA; (2) systematic investigation with the reasonable comparison of the existing systems to articulate their advantages and shortcomings; (3) detailed analysis of challenges in four important dimensions to shed light on future directions.