Wang, Di
Differentially Private Stochastic Convex Optimization in (Non)-Euclidean Space Revisited
Su, Jinyan, Zhao, Changhong, Wang, Di
In this paper, we revisit the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) in Euclidean and general $\ell_p^d$ spaces. Specifically, we focus on three settings that are still far from well understood: (1) DP-SCO over a constrained and bounded (convex) set in Euclidean space; (2) unconstrained DP-SCO in $\ell_p^d$ space; (3) DP-SCO with heavy-tailed data over a constrained and bounded set in $\ell_p^d$ space. For problem (1), for both convex and strongly convex loss functions, we propose methods whose outputs could achieve (expected) excess population risks that are only dependent on the Gaussian width of the constraint set rather than the dimension of the space. Moreover, we also show the bound for strongly convex functions is optimal up to a logarithmic factor. For problems (2) and (3), we propose several novel algorithms and provide the first theoretical results for both cases when $1
DIME-Net: Neural Network-Based Dynamic Intrinsic Parameter Rectification for Cameras with Optical Image Stabilization System
Yeh, Shu-Hao, Xie, Shuangyu, Wang, Di, Yan, Wei, Song, Dezhen
Optical Image Stabilization (OIS) system in mobile devices reduces image blurring by steering lens to compensate for hand jitters. However, OIS changes intrinsic camera parameters (i.e. $\mathrm{K}$ matrix) dynamically which hinders accurate camera pose estimation or 3D reconstruction. Here we propose a novel neural network-based approach that estimates $\mathrm{K}$ matrix in real-time so that pose estimation or scene reconstruction can be run at camera native resolution for the highest accuracy on mobile devices. Our network design takes gratified projection model discrepancy feature and 3D point positions as inputs and employs a Multi-Layer Perceptron (MLP) to approximate $f_{\mathrm{K}}$ manifold. We also design a unique training scheme for this network by introducing a Back propagated PnP (BPnP) layer so that reprojection error can be adopted as the loss function. The training process utilizes precise calibration patterns for capturing accurate $f_{\mathrm{K}}$ manifold but the trained network can be used anywhere. We name the proposed Dynamic Intrinsic Manifold Estimation network as DIME-Net and have it implemented and tested on three different mobile devices. In all cases, DIME-Net can reduce reprojection error by at least $64\%$ indicating that our design is successful.
On Stability and Generalization of Bilevel Optimization Problem
Ding, Meng, Lei, Mingxi, Lei, Yunwen, Wang, Di, Xu, Jinhui
(Stochastic) bilevel optimization is a frequently encountered problem in machine learning with a wide range of applications such as meta-learning, hyper-parameter optimization, and reinforcement learning. Most of the existing studies on this problem only focused on analyzing the convergence or improving the convergence rate, while little effort has been devoted to understanding its generalization behaviors. In this paper, we conduct a thorough analysis on the generalization of first-order (gradient-based) methods for the bilevel optimization problem. We first establish a fundamental connection between algorithmic stability and generalization error in different forms and give a high probability generalization bound which improves the previous best one from $\bigO(\sqrt{n})$ to $\bigO(\log n)$, where $n$ is the sample size. We then provide the first stability bounds for the general case where both inner and outer level parameters are subject to continuous update, while existing work allows only the outer level parameter to be updated. Our analysis can be applied in various standard settings such as strongly-convex-strongly-convex (SC-SC), convex-convex (C-C), and nonconvex-nonconvex (NC-NC). Our analysis for the NC-NC setting can also be extended to a particular nonconvex-strongly-convex (NC-SC) setting that is commonly encountered in practice. Finally, we corroborate our theoretical analysis and demonstrate how iterations can affect the generalization error by experiments on meta-learning and hyper-parameter optimization.
Sketching with Spherical Designs for Noisy Data Fitting on Spheres
Lin, Shao-Bo, Wang, Di, Zhou, Ding-Xuan
This paper proposes a sketching strategy based on spherical designs, which is applied to the classical spherical basis function approach for massive spherical data fitting. We conduct theoretical analysis and numerical verifications to demonstrate the feasibility of the proposed { sketching} strategy. From the theoretical side, we prove that sketching based on spherical designs can reduce the computational burden of the spherical basis function approach without sacrificing its approximation capability. In particular, we provide upper and lower bounds for the proposed { sketching} strategy to fit noisy data on spheres. From the experimental side, we numerically illustrate the feasibility of the sketching strategy by showing its comparable fitting performance with the spherical basis function approach. These interesting findings show that the proposed sketching strategy is capable of fitting massive and noisy data on spheres.
On Private and Robust Bandits
Wu, Yulian, Zhou, Xingyu, Tao, Youming, Wang, Di
We study private and robust multi-armed bandits (MABs), where the agent receives Huber's contaminated heavy-tailed rewards and meanwhile needs to ensure differential privacy. We first present its minimax lower bound, characterizing the information-theoretic limit of regret with respect to privacy budget, contamination level and heavy-tailedness. Then, we propose a meta-algorithm that builds on a private and robust mean estimation sub-routine \texttt{PRM} that essentially relies on reward truncation and the Laplace mechanism only. For two different heavy-tailed settings, we give specific schemes of \texttt{PRM}, which enable us to achieve nearly-optimal regret. As by-products of our main results, we also give the first minimax lower bound for private heavy-tailed MABs (i.e., without contamination). Moreover, our two proposed truncation-based \texttt{PRM} achieve the optimal trade-off between estimation accuracy, privacy and robustness. Finally, we support our theoretical results with experimental studies.
Kernel-Based Distributed Q-Learning: A Scalable Reinforcement Learning Approach for Dynamic Treatment Regimes
Wang, Di, Wang, Yao, Tang, Shaojie, Lin, Shao-Bo
In recent years, large amounts of electronic health records (EHRs) concerning chronic diseases, such as cancer, diabetes, and mental disease, have been collected to facilitate medical diagnosis. Modeling the dynamic properties of EHRs related to chronic diseases can be efficiently done using dynamic treatment regimes (DTRs), which are a set of sequential decision rules. While Reinforcement learning (RL) is a widely used method for creating DTRs, there is ongoing research in developing RL algorithms that can effectively handle large amounts of data. In this paper, we present a novel approach, a distributed Q-learning algorithm, for generating DTRs. The novelties of our research are as follows: 1) From a methodological perspective, we present a novel and scalable approach for generating DTRs by combining distributed learning with Q-learning. The proposed approach is specifically designed to handle large amounts of data and effectively generate DTRs. 2) From a theoretical standpoint, we provide generalization error bounds for the proposed distributed Q-learning algorithm, which are derived within the framework of statistical learning theory. These bounds quantify the relationships between sample size, prediction accuracy, and computational burden, providing insights into the performance of the algorithm. 3) From an applied perspective, we demonstrate the effectiveness of our proposed distributed Q-learning algorithm for DTRs by applying it to clinical cancer treatments. The results show that our algorithm outperforms both traditional linear Q-learning and commonly used deep Q-learning in terms of both prediction accuracy and computation cost.
Personalized and privacy-preserving federated heterogeneous medical image analysis with PPPML-HMI
Zhou, Juexiao, Zhou, Longxi, Wang, Di, Xu, Xiaopeng, Li, Haoyang, Chu, Yuetan, Han, Wenkai, Gao, Xin
Heterogeneous data is endemic due to the use of diverse models and settings of devices by hospitals in the field of medical imaging. However, there are few open-source frameworks for federated heterogeneous medical image analysis with personalization and privacy protection simultaneously without the demand to modify the existing model structures or to share any private data. In this paper, we proposed PPPML-HMI, an open-source learning paradigm for personalized and privacy-preserving federated heterogeneous medical image analysis. To our best knowledge, personalization and privacy protection were achieved simultaneously for the first time under the federated scenario by integrating the PerFedAvg algorithm and designing our novel cyclic secure aggregation with the homomorphic encryption algorithm. To show the utility of PPPML-HMI, we applied it to a simulated classification task namely the classification of healthy people and patients from the RAD-ChestCT Dataset, and one real-world segmentation task namely the segmentation of lung infections from COVID-19 CT scans. For the real-world task, PPPML-HMI achieved $\sim$5\% higher Dice score on average compared to conventional FL under the heterogeneous scenario. Meanwhile, we applied the improved deep leakage from gradients to simulate adversarial attacks and showed the solid privacy-preserving capability of PPPML-HMI. By applying PPPML-HMI to both tasks with different neural networks, a varied number of users, and sample sizes, we further demonstrated the strong robustness of PPPML-HMI.
Quantum Computing Provides Exponential Regret Improvement in Episodic Reinforcement Learning
Ganguly, Bhargav, Wu, Yulian, Wang, Di, Aggarwal, Vaneet
In this paper, we investigate the problem of \textit{episodic reinforcement learning} with quantum oracles for state evolution. To this end, we propose an \textit{Upper Confidence Bound} (UCB) based quantum algorithmic framework to facilitate learning of a finite-horizon MDP. Our quantum algorithm achieves an exponential improvement in regret as compared to the classical counterparts, achieving a regret of $\Tilde{\mathcal{O}}(1)$ as compared to $\Tilde{\mathcal{O}}(\sqrt{K})$ \footnote{$\Tilde{\mathcal{O}}(\cdot)$ hides logarithmic terms.}, $K$ being the number of training episodes. In order to achieve this advantage, we exploit efficient quantum mean estimation technique that provides quadratic improvement in the number of i.i.d. samples needed to estimate the mean of sub-Gaussian random variables as compared to classical mean estimation. This improvement is a key to the significant regret improvement in quantum reinforcement learning. We provide proof-of-concept experiments on various RL environments that in turn demonstrate performance gains of the proposed algorithmic framework.
Loss-Controlling Calibration for Predictive Models
Wang, Di, Shi, Junzhi, Wang, Pingping, Zhuang, Shuo, Li, Hongyue
We propose a learning framework for calibrating predictive models to make loss-controlling prediction for exchangeable data, which extends our recently proposed conformal loss-controlling prediction for more general cases. By comparison, the predictors built by the proposed loss-controlling approach are not limited to set predictors, and the loss function can be any measurable function without the monotone assumption. To control the loss values in an efficient way, we introduce transformations preserving exchangeability to prove finite-sample controlling guarantee when the test label is obtained, and then develop an approximation approach to construct predictors. The transformations can be built on any predefined function, which include using optimization algorithms for parameter searching. This approach is a natural extension of conformal loss-controlling prediction, since it can be reduced to the latter when the set predictors have the nesting property and the loss functions are monotone. Our proposed method is applied to selective regression and high-impact weather forecasting problems, which demonstrates its effectiveness for general loss-controlling prediction.
Robust Budget Pacing with a Single Sample
Balseiro, Santiago, Kumar, Rachitesh, Mirrokni, Vahab, Sivan, Balasubramanian, Wang, Di
Major Internet advertising platforms offer budget pacing tools as a standard service for advertisers to manage their ad campaigns. Given the inherent non-stationarity in an advertiser's value and also competing advertisers' values over time, a commonly used approach is to learn a target expenditure plan that specifies a target spend as a function of time, and then run a controller that tracks this plan. This raises the question: how many historical samples are required to learn a good expenditure plan? We study this question by considering an advertiser repeatedly participating in $T$ second-price auctions, where the tuple of her value and the highest competing bid is drawn from an unknown time-varying distribution. The advertiser seeks to maximize her total utility subject to her budget constraint. Prior work has shown the sufficiency of $T\log T$ samples per distribution to achieve the optimal $O(\sqrt{T})$-regret. We dramatically improve this state-of-the-art and show that just one sample per distribution is enough to achieve the near-optimal $\tilde O(\sqrt{T})$-regret, while still being robust to noise in the sampling distributions.