Goto

Collaborating Authors

 Wang, Chi


Fine-Grained Controllable Apparel Showcase Image Generation via Garment-Centric Outpainting

arXiv.org Artificial Intelligence

In this paper, we propose a novel garment-centric outpainting (GCO) framework based on the latent diffusion model (LDM) for fine-grained controllable apparel showcase image generation. The proposed framework aims at customizing a fashion model wearing a given garment via text prompts and facial images. Different from existing methods, our framework takes a garment image segmented from a dressed mannequin or a person as the input, eliminating the need for learning cloth deformation and ensuring faithful preservation of garment details. The proposed framework consists of two stages. In the first stage, we introduce a garment-adaptive pose prediction model that generates diverse poses given the garment. Then, in the next stage, we generate apparel showcase images, conditioned on the garment and the predicted poses, along with specified text prompts and facial images. Notably, a multi-scale appearance customization module (MS-ACM) is designed to allow both overall and fine-grained text-based control over the generated model's appearance. Moreover, we leverage a lightweight feature fusion operation without introducing any extra encoders or modules to integrate multiple conditions, which is more efficient. Extensive experiments validate the superior performance of our framework compared to state-of-the-art methods.


Autellix: An Efficient Serving Engine for LLM Agents as General Programs

arXiv.org Artificial Intelligence

Large language model (LLM) applications are evolving beyond simple chatbots into dynamic, general-purpose agentic programs, which scale LLM calls and output tokens to help AI agents reason, explore, and solve complex tasks. However, existing LLM serving systems ignore dependencies between programs and calls, missing significant opportunities for optimization. Our analysis reveals that programs submitted to LLM serving engines experience long cumulative wait times, primarily due to head-of-line blocking at both the individual LLM request and the program. To address this, we introduce Autellix, an LLM serving system that treats programs as first-class citizens to minimize their end-to-end latencies. Autellix intercepts LLM calls submitted by programs, enriching schedulers with program-level context. We propose two scheduling algorithms-for single-threaded and distributed programs-that preempt and prioritize LLM calls based on their programs' previously completed calls. Our evaluation demonstrates that across diverse LLMs and agentic workloads, Autellix improves throughput of programs by 4-15x at the same latency compared to state-of-the-art systems, such as vLLM.


Automating Prompt Leakage Attacks on Large Language Models Using Agentic Approach

arXiv.org Artificial Intelligence

This paper presents a novel approach to evaluating the security of large language models (LLMs) against prompt leakage-the exposure of system-level prompts or proprietary configurations. We define prompt leakage as a critical threat to secure LLM deployment and introduce a framework for testing the robustness of LLMs using agentic teams. Leveraging AG2 (formerly AutoGen), we implement a multi-agent system where cooperative agents are tasked with probing and exploiting the target LLM to elicit its prompt. Guided by traditional definitions of security in cryptography, we further define a prompt leakage-safe system as one in which an attacker cannot distinguish between two agents: one initialized with an original prompt and the other with a prompt stripped of all sensitive information. In a safe system, the agents' outputs will be indistinguishable to the attacker, ensuring that sensitive information remains secure. This cryptographically inspired framework provides a rigorous standard for evaluating and designing secure LLMs. This work establishes a systematic methodology for adversarial testing of prompt leakage, bridging the gap between automated threat modeling and practical LLM security. You can find the implementation of our prompt leakage probing on GitHub.


NLGR: Utilizing Neighbor Lists for Generative Rerank in Personalized Recommendation Systems

arXiv.org Artificial Intelligence

Reranking plays a crucial role in modern multi-stage recommender systems by rearranging the initial ranking list. Due to the inherent challenges of combinatorial search spaces, some current research adopts an evaluator-generator paradigm, with a generator generating feasible sequences and an evaluator selecting the best sequence based on the estimated list utility. However, these methods still face two issues. Firstly, due to the goal inconsistency problem between the evaluator and generator, the generator tends to fit the local optimal solution of exposure distribution rather than combinatorial space optimization. Secondly, the strategy of generating target items one by one is difficult to achieve optimality because it ignores the information of subsequent items. To address these issues, we propose a utilizing Neighbor Lists model for Generative Reranking (NLGR), which aims to improve the performance of the generator in the combinatorial space. NLGR follows the evaluator-generator paradigm and improves the generator's training and generating methods. Specifically, we use neighbor lists in combination space to enhance the training process, making the generator perceive the relative scores and find the optimization direction. Furthermore, we propose a novel sampling-based non-autoregressive generation method, which allows the generator to jump flexibly from the current list to any neighbor list. Extensive experiments on public and industrial datasets validate NLGR's effectiveness and we have successfully deployed NLGR on the Meituan food delivery platform.


EcoAct: Economic Agent Determines When to Register What Action

arXiv.org Artificial Intelligence

Recent advancements have enabled Large Language Models (LLMs) to function as agents that can perform actions using external tools. This requires registering, i.e., integrating tool information into the LLM context prior to taking actions. Current methods indiscriminately incorporate all candidate tools into the agent's context and retain them across multiple reasoning steps. This process remains opaque to LLM agents and is not integrated into their reasoning procedures, leading to inefficiencies due to increased context length from irrelevant tools. To address this, we introduce EcoAct, a tool using algorithm that allows LLMs to selectively register tools as needed, optimizing context use. By integrating the tool registration process into the reasoning procedure, EcoAct reduces computational costs by over 50% in multiple steps reasoning tasks while maintaining performance, as demonstrated through extensive experiments. Moreover, it can be plugged into any reasoning pipeline with only minor modifications to the prompt, making it applicable to LLM agents now and future.


Steering Large Language Models between Code Execution and Textual Reasoning

arXiv.org Artificial Intelligence

While a lot of recent research focuses on enhancing the textual reasoning capabilities of Large Language Models (LLMs) by optimizing the multi-agent framework or reasoning chains, several benchmark tasks can be solved with 100% success through direct coding, which is more scalable and avoids the computational overhead associated with textual iterating and searching. Textual reasoning has inherent limitations in solving tasks with challenges in math, logics, optimization, and searching, which is unlikely to be solved by simply scaling up the model and data size. The recently released OpenAI GPT Code Interpreter and multi-agent frameworks such as AutoGen have demonstrated remarkable proficiency of integrating code generation and execution to solve complex tasks using LLMs. We discover some interesting patterns on when models use code vs. textual reasoning with the evolution to task complexity and model sizes, which even result in an astonishingly inverse scaling law. We also discover that results from LLM written code are not always better than using textual reasoning, even if the task could be solved through code. To mitigate the above issues, we propose three methods to better steer LLM code/text generation and achieve a notable improvement. The costs of token lengths and runtime are thoroughly discussed for all the methods. We believe the problem of steering LLM code/text generation is critical for future research and has much space for further improvement. The rapid progress of LLMs has inspired a great quantity of research in building general languageguided agents that can solve various tasks automatically (Wu et al., 2023; Li et al., 2023a; Yao et al., 2024; Besta et al., 2024). Work done during internship at Microsoft Research. Work done while working at Microsoft Research. Figure 1: The cases that GPT-4o makes simple mistakes by direct textual reasoning but can reliably solve the problem with prompted to use code. Text is suitable for semantic analysis and commonsense reasoning, but is not the best format for precise computation and planning, symbolic manipulation, and algorithmic processing (Kambhampati et al., 2024b; Valmeekam et al.; Chen et al., 2024a). Conversely, programs excel in rigorous operations, and can outsource intricate calculations to specialized tools like equation solvers. Since recent LLMs are well trained at code generation (Bairi et al., 2024), one question that comes up is whether querying LLMs to generate code can be more effective than textual reasoning. In this study, we emphasize that textual reasoning has inherent limitations in solving tasks that involve math, logic, and optimization, where coding can often provide a better solution.


Interactive Speculative Planning: Enhance Agent Efficiency through Co-design of System and User Interface

arXiv.org Artificial Intelligence

Agents, as user-centric tools, are increasingly deployed for human task delegation, assisting with a broad spectrum of requests by generating thoughts, engaging with user proxies, and producing action plans. However, agents based on large language models (LLMs) often face substantial planning latency due to two primary factors: the efficiency limitations of the underlying LLMs due to their large size and high demand, and the structural complexity of the agents due to the extensive generation of intermediate thoughts to produce the final output. Given that inefficiency in service provision can undermine the value of automation for users, this paper presents a human-centered efficient agent planning method -- Interactive Speculative Planning -- aiming at enhancing the efficiency of agent planning through both system design and human-AI interaction. Our approach advocates for the co-design of the agent system and user interface, underscoring the importance of an agent system that can fluidly manage user interactions and interruptions. By integrating human interruptions as a fundamental component of the system, we not only make it more user-centric but also expedite the entire process by leveraging human-in-the-loop interactions to provide accurate intermediate steps. Code and data will be released.


Offline Training of Language Model Agents with Functions as Learnable Weights

arXiv.org Artificial Intelligence

Researchers and practitioners have recently reframed powerful Large Language Models (LLMs) as agents, enabling them to automate complex tasks largely via the use of specialized functions. To facilitate the development of LLM agents, we present a novel paradigm of training LLM agents without modifying the LLM weights, which is particularly useful when the LLMs are difficult or inaccessible for modifications. Inspired by how humans continuously forge tools to adapt to real-world tasks, rather than change our biological structure to fit a static set of tools, we propose to progressively forge agent's functions to better solve the downstream tasks instead of modifying the LLM weights. By treating the functions as learnable `agent parameters' and leveraging the fundamental idea of model training in artificial intelligence, we develop AgentOptimizer that employs the LLM to update agents' functions and devise an agent training algorithm with two strategies, roll-back, and early-stop, to streamline the training process. With extensive experiments, we showcase that the agent training paradigm could significantly improve the performance of representative LLM agents in various downstream tasks. We also study the behavior of the agent training regarding aspects like the learning curve and domain transferability.


Adaptive In-conversation Team Building for Language Model Agents

arXiv.org Artificial Intelligence

Leveraging multiple large language model (LLM) agents has shown to be a promising approach for tackling complex tasks, while the effective design of multiple agents for a particular application remains an art. It is thus intriguing to answer a critical question: Given a task, how can we build a team of LLM agents to solve it effectively? Our new adaptive team-building paradigm offers a flexible solution, realized through a novel agent design named Captain Agent. It dynamically forms and manages teams for each step of a task-solving process, utilizing nested group conversations and reflection to ensure diverse expertise and prevent stereotypical outputs. It allows for a flexible yet structured approach to problem-solving and can help reduce redundancy and enhance output diversity. A comprehensive evaluation across six real-world scenarios demonstrates that Captain Agent significantly outperforms existing multi-agent methods with 21.94% improvement in average accuracy, providing outstanding performance without requiring task-specific prompt engineering.


Assessing and Verifying Task Utility in LLM-Powered Applications

arXiv.org Artificial Intelligence

The rapid development of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents, assisting humans in their daily tasks. However, a significant gap remains in assessing to what extent LLM-powered applications genuinely enhance user experience and task execution efficiency. This highlights the need to verify utility of LLM-powered applications, particularly by ensuring alignment between the application's functionality and end-user needs. We introduce AgentEval, a novel framework designed to simplify the utility verification process by automatically proposing a set of criteria tailored to the unique purpose of any given application. This allows for a comprehensive assessment, quantifying the utility of an application against the suggested criteria. We present a comprehensive analysis of the effectiveness and robustness of AgentEval for two open source datasets including Math Problem solving and ALFWorld House-hold related tasks. For reproducibility purposes, we make the data, code and all the logs publicly available at https://bit.ly/3w3yKcS .