Wang, Bowen
Mirror Online Conformal Prediction with Intermittent Feedback
Wang, Bowen, Zecchin, Matteo, Simeone, Osvaldo
Online conformal prediction enables the runtime calibration of a pre-trained artificial intelligence model using feedback on its performance. Calibration is achieved through set predictions that are updated via online rules so as to ensure long-term coverage guarantees. While recent research has demonstrated the benefits of incorporating prior knowledge into the calibration process, this has come at the cost of replacing coverage guarantees with less tangible regret guarantees based on the quantile loss. This work introduces intermittent mirror online conformal prediction (IM-OCP), a novel runtime calibration framework that integrates prior knowledge, while maintaining long-term coverage and achieving sub-linear regret. IM-OCP features closed-form updates with minimal memory complexity, and is designed to operate under potentially intermittent feedback.
GS-SDF: LiDAR-Augmented Gaussian Splatting and Neural SDF for Geometrically Consistent Rendering and Reconstruction
Liu, Jianheng, Wan, Yunfei, Wang, Bowen, Zheng, Chunran, Lin, Jiarong, Zhang, Fu
Digital twins are fundamental to the development of autonomous driving and embodied artificial intelligence. However, achieving high-granularity surface reconstruction and high-fidelity rendering remains a challenge. Gaussian splatting offers efficient photorealistic rendering but struggles with geometric inconsistencies due to fragmented primitives and sparse observational data in robotics applications. Existing regularization methods, which rely on render-derived constraints, often fail in complex environments. Moreover, effectively integrating sparse LiDAR data with Gaussian splatting remains challenging. We propose a unified LiDAR-visual system that synergizes Gaussian splatting with a neural signed distance field. The accurate LiDAR point clouds enable a trained neural signed distance field to offer a manifold geometry field, This motivates us to offer an SDF-based Gaussian initialization for physically grounded primitive placement and a comprehensive geometric regularization for geometrically consistent rendering and reconstruction. Experiments demonstrate superior reconstruction accuracy and rendering quality across diverse trajectories. To benefit the community, the codes will be released at https://github.com/hku-mars/GS-SDF.
Investigating the Adaptive Robustness with Knowledge Conflicts in LLM-based Multi-Agent Systems
Ju, Tianjie, Wang, Bowen, Fei, Hao, Lee, Mong-Li, Hsu, Wynne, Li, Yun, Wang, Qianren, Cheng, Pengzhou, Wu, Zongru, Zhang, Zhuosheng, Liu, Gongshen
Recent advances in Large Language Models (LLMs) have upgraded them from sophisticated text generators to autonomous agents capable of corporation and tool use in multi-agent systems (MASs). However, the robustness of these LLM-based MASs, especially under knowledge conflicts, remains unclear. In this paper, we design four comprehensive metrics to investigate the robustness of MASs when facing mild or task-critical knowledge conflicts. We first analyze mild knowledge conflicts introduced by heterogeneous agents and find that they do not harm system robustness but instead improve collaborative decision-making. Next, we investigate task-critical knowledge conflicts by synthesizing knowledge conflicts and embedding them into one of the agents. Our results show that these conflicts have surprisingly little to no impact on MAS robustness. Furthermore, we observe that MASs demonstrate certain self-repairing capabilities by reducing their reliance on knowledge conflicts and adopting alternative solution paths to maintain stability. Finally, we conduct ablation studies on the knowledge conflict number, agent number, and interaction rounds, finding that the self-repairing capability of MASs has intrinsic limits, and all findings hold consistently across various factors. Our code is publicly available at https://github.com/wbw625/MultiAgentRobustness.
CTBench: A Comprehensive Benchmark for Evaluating Language Model Capabilities in Clinical Trial Design
Neehal, Nafis, Wang, Bowen, Debopadhaya, Shayom, Dan, Soham, Murugesan, Keerthiram, Anand, Vibha, Bennett, Kristin P.
CTBench is introduced as a benchmark to assess language models (LMs) in aiding clinical study design. Given study-specific metadata, CTBench evaluates AI models' ability to determine the baseline features of a clinical trial (CT), which include demographic and relevant features collected at the trial's start from all participants. These baseline features, typically presented in CT publications (often as Table 1), are crucial for characterizing study cohorts and validating results. Baseline features, including confounders and covariates, are also necessary for accurate treatment effect estimation in studies involving observational data. CTBench consists of two datasets: "CT-Repo," containing baseline features from 1,690 clinical trials sourced from clinicaltrials.gov, and "CT-Pub," a subset of 100 trials with more comprehensive baseline features gathered from relevant publications. Two LM-based evaluation methods are developed to compare the actual baseline feature lists against LM-generated responses. "ListMatch-LM" and "ListMatch-BERT" use GPT-4o and BERT scores (at various thresholds), respectively, for evaluation. To establish baseline results, advanced prompt engineering techniques using LLaMa3-70B-Instruct and GPT-4o in zero-shot and three-shot learning settings are applied to generate potential baseline features. The performance of GPT-4o as an evaluator is validated through human-in-the-loop evaluations on the CT-Pub dataset, where clinical experts confirm matches between actual and LM-generated features. The results highlight a promising direction with significant potential for improvement, positioning CTBench as a useful tool for advancing research on AI in CT design and potentially enhancing the efficacy and robustness of CTs.
ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools
GLM, Team, :, null, Zeng, Aohan, Xu, Bin, Wang, Bowen, Zhang, Chenhui, Yin, Da, Rojas, Diego, Feng, Guanyu, Zhao, Hanlin, Lai, Hanyu, Yu, Hao, Wang, Hongning, Sun, Jiadai, Zhang, Jiajie, Cheng, Jiale, Gui, Jiayi, Tang, Jie, Zhang, Jing, Li, Juanzi, Zhao, Lei, Wu, Lindong, Zhong, Lucen, Liu, Mingdao, Huang, Minlie, Zhang, Peng, Zheng, Qinkai, Lu, Rui, Duan, Shuaiqi, Zhang, Shudan, Cao, Shulin, Yang, Shuxun, Tam, Weng Lam, Zhao, Wenyi, Liu, Xiao, Xia, Xiao, Zhang, Xiaohan, Gu, Xiaotao, Lv, Xin, Liu, Xinghan, Liu, Xinyi, Yang, Xinyue, Song, Xixuan, Zhang, Xunkai, An, Yifan, Xu, Yifan, Niu, Yilin, Yang, Yuantao, Li, Yueyan, Bai, Yushi, Dong, Yuxiao, Qi, Zehan, Wang, Zhaoyu, Yang, Zhen, Du, Zhengxiao, Hou, Zhenyu, Wang, Zihan
We introduce ChatGLM, an evolving family of large language models that we have been developing over time. This report primarily focuses on the GLM-4 language series, which includes GLM-4, GLM-4-Air, and GLM-4-9B. They represent our most capable models that are trained with all the insights and lessons gained from the preceding three generations of ChatGLM. To date, the GLM-4 models are pre-trained on ten trillions of tokens mostly in Chinese and English, along with a small set of corpus from 24 languages, and aligned primarily for Chinese and English usage. The high-quality alignment is achieved via a multi-stage post-training process, which involves supervised fine-tuning and learning from human feedback. Evaluations show that GLM-4 1) closely rivals or outperforms GPT-4 in terms of general metrics such as MMLU, GSM8K, MATH, BBH, GPQA, and HumanEval, 2) gets close to GPT-4-Turbo in instruction following as measured by IFEval, 3) matches GPT-4 Turbo (128K) and Claude 3 for long context tasks, and 4) outperforms GPT-4 in Chinese alignments as measured by AlignBench. The GLM-4 All Tools model is further aligned to understand user intent and autonomously decide when and which tool(s) touse -- including web browser, Python interpreter, text-to-image model, and user-defined functions -- to effectively complete complex tasks. In practical applications, it matches and even surpasses GPT-4 All Tools in tasks like accessing online information via web browsing and solving math problems using Python interpreter. Over the course, we have open-sourced a series of models, including ChatGLM-6B (three generations), GLM-4-9B (128K, 1M), GLM-4V-9B, WebGLM, and CodeGeeX, attracting over 10 million downloads on Hugging face in the year 2023 alone. The open models can be accessed through https://github.com/THUDM and https://huggingface.co/THUDM.
APAR: LLMs Can Do Auto-Parallel Auto-Regressive Decoding
Liu, Mingdao, Zeng, Aohan, Wang, Bowen, Zhang, Peng, Tang, Jie, Dong, Yuxiao
The massive adoption of large language models (LLMs) demands efficient deployment strategies. However, the auto-regressive decoding process, which is fundamental to how most LLMs generate text, poses challenges to achieve efficient serving. In this work, we introduce a parallel auto-regressive generation method. By instruct-tuning on general domain data that contains hierarchical structures, we enable LLMs to independently plan their generation process and perform auto-parallel auto-regressive (APAR) generation, significantly reducing the number of generation steps. APAR alone can achieve up to 2x speed-up, and when combined with speculative decoding, the speed-up can reach up to 4x. In addition, APAR reduces the key-value cache consumption and attention computation during generation. This leads to a throughput increase of 20-70% and a latency reduce of 20-35% in high-throughput scenarios, compared to state-of-the-art serving frameworks.
Causal Intervention for Measuring Confidence in Drug-Target Interaction Prediction
Ye, Wenting, Li, Chen, Xie, Yang, Zhang, Wen, Zhang, Hong-Yu, Wang, Bowen, Cheng, Debo, Feng, Zaiwen
Identifying and discovering drug-target interactions(DTIs) are vital steps in drug discovery and development. They play a crucial role in assisting scientists in finding new drugs and accelerating the drug development process. Recently, knowledge graph and knowledge graph embedding (KGE) models have made rapid advancements and demonstrated impressive performance in drug discovery. However, such models lack authenticity and accuracy in drug target identification, leading to an increased misjudgment rate and reduced drug development efficiency. To address these issues, we focus on the problem of drug-target interactions, with knowledge mapping as the core technology. Specifically, a causal intervention-based confidence measure is employed to assess the triplet score to improve the accuracy of the drug-target interaction prediction model. Experimental results demonstrate that the developed confidence measurement method based on causal intervention can significantly enhance the accuracy of DTI link prediction, particularly for high-precision models. The predicted results are more valuable in guiding the design and development of subsequent drug development experiments, thereby significantly improving the efficiency of drug development.
MPrompt: Exploring Multi-level Prompt Tuning for Machine Reading Comprehension
Chen, Guoxin, Qian, Yiming, Wang, Bowen, Li, Liangzhi
The large language models have achieved superior performance on various natural language tasks. One major drawback of such approaches is they are resource-intensive in fine-tuning new datasets. Soft-prompt tuning presents a resource-efficient solution to fine-tune the pre-trained language models (PLMs) while keeping their weight frozen. Existing soft prompt methods mainly focus on designing the input-independent prompts that steer the model to fit the domain of the new dataset. Those methods often ignore the fine-grained information about the task and context of the text. In this paper, we propose a multi-level prompt tuning (MPrompt) method for machine reading comprehension. It utilizes prompts at task-specific, domain-specific, and context-specific levels to enhance the comprehension of input semantics at different granularities. We also propose an independence constraint to steer each domain-specific prompt to focus on information within its domain to avoid redundancy. Moreover, we present a prompt generator that incorporates context-related knowledge in the prompt generation to enhance contextual relevancy. We conducted extensive experiments on 12 benchmarks of various QA formats and achieved an average improvement of 1.94\% over the state-of-the-art methods.
CARE-MI: Chinese Benchmark for Misinformation Evaluation in Maternity and Infant Care
Xiang, Tong, Li, Liangzhi, Li, Wangyue, Bai, Mingbai, Wei, Lu, Wang, Bowen, Garcia, Noa
The recent advances in natural language processing (NLP), have led to a new trend of applying large language models (LLMs) to real-world scenarios. While the latest LLMs are astonishingly fluent when interacting with humans, they suffer from the misinformation problem by unintentionally generating factually false statements. This can lead to harmful consequences, especially when produced within sensitive contexts, such as healthcare. Yet few previous works have focused on evaluating misinformation in the long-form (LF) generation of LLMs, especially for knowledge-intensive topics. Moreover, although LLMs have been shown to perform well in different languages, misinformation evaluation has been mostly conducted in English. To this end, we present a benchmark, CARE-MI, for evaluating LLM misinformation in: 1) a sensitive topic, specifically the maternity and infant care domain; and 2) a language other than English, namely Chinese. Most importantly, we provide an innovative paradigm for building LF generation evaluation benchmarks that can be transferred to other knowledge-intensive domains and low-resourced languages. Our proposed benchmark fills the gap between the extensive usage of LLMs and the lack of datasets for assessing the misinformation generated by these models. It contains 1,612 expert-checked questions, accompanied with human-selected references. Using our benchmark, we conduct extensive experiments and found that current Chinese LLMs are far from perfect in the topic of maternity and infant care. In an effort to minimize the reliance on human resources for performance evaluation, we offer off-the-shelf judgment models for automatically assessing the LF output of LLMs given benchmark questions. Moreover, we compare potential solutions for LF generation evaluation and provide insights for building better automated metrics.
TCRA-LLM: Token Compression Retrieval Augmented Large Language Model for Inference Cost Reduction
Liu, Junyi, Li, Liangzhi, Xiang, Tong, Wang, Bowen, Qian, Yiming
Since ChatGPT released its API for public use, the number of applications built on top of commercial large language models (LLMs) increase exponentially. One popular usage of such models is leveraging its in-context learning ability and generating responses given user queries leveraging knowledge obtained by retrieval augmentation. One problem of deploying commercial retrieval-augmented LLMs is the cost due to the additionally retrieved context that largely increases the input token size of the LLMs. To mitigate this, we propose a token compression scheme that includes two methods: summarization compression and semantic compression. The first method applies a T5-based model that is fine-tuned by datasets generated using self-instruct containing samples with varying lengths and reduce token size by doing summarization. The second method further compresses the token size by removing words with lower impact on the semantic. In order to adequately evaluate the effectiveness of the proposed methods, we propose and utilize a dataset called Food-Recommendation DB (FRDB) focusing on food recommendation for women around pregnancy period or infants. Our summarization compression can reduce 65% of the retrieval token size with further 0.3% improvement on the accuracy; semantic compression provides a more flexible way to trade-off the token size with performance, for which we can reduce the token size by 20% with only 1.6% of accuracy drop.