Wan, Ruyuan
CoCoLoFa: A Dataset of News Comments with Common Logical Fallacies Written by LLM-Assisted Crowds
Yeh, Min-Hsuan, Wan, Ruyuan, Huang, Ting-Hao 'Kenneth'
Detecting logical fallacies in texts can help users spot argument flaws, but automating this detection is not easy. Manually annotating fallacies in large-scale, real-world text data to create datasets for developing and validating detection models is costly. This paper introduces CoCoLoFa, the largest known logical fallacy dataset, containing 7,706 comments for 648 news articles, with each comment labeled for fallacy presence and type. We recruited 143 crowd workers to write comments embodying specific fallacy types (e.g., slippery slope) in response to news articles. Recognizing the complexity of this writing task, we built an LLM-powered assistant into the workers' interface to aid in drafting and refining their comments. Experts rated the writing quality and labeling validity of CoCoLoFa as high and reliable. BERT-based models fine-tuned using CoCoLoFa achieved the highest fallacy detection (F1=0.86) and classification (F1=0.87) performance on its test set, outperforming the state-of-the-art LLMs. Our work shows that combining crowdsourcing and LLMs enables us to more effectively construct datasets for complex linguistic phenomena that crowd workers find challenging to produce on their own.
CoCo Matrix: Taxonomy of Cognitive Contributions in Co-writing with Intelligent Agents
Wan, Ruyuan, Gebreegziabhe, Simret, Li, Toby Jia-Jun, Badillo-Urquiola, Karla
In recent years, there has been a growing interest in employing intelligent agents in writing. Previous work emphasizes the evaluation of the quality of end product-whether it was coherent and polished, overlooking the journey that led to the product, which is an invaluable dimension of the creative process. To understand how to recognize human efforts in co-writing with intelligent writing systems, we adapt Flower and Hayes' cognitive process theory of writing and propose CoCo Matrix, a two-dimensional taxonomy of entropy and information gain, to depict the new human-agent co-writing model. We define four quadrants and situate thirty-four published systems within the taxonomy. Our research found that low entropy and high information gain systems are under-explored, yet offer promising future directions in writing tasks that benefit from the agent's divergent planning and the human's focused translation. CoCo Matrix, not only categorizes different writing systems but also deepens our understanding of the cognitive processes in human-agent co-writing. By analyzing minimal changes in the writing process, CoCo Matrix serves as a proxy for the writer's mental model, allowing writers to reflect on their contributions. This reflection is facilitated through the measured metrics of information gain and entropy, which provide insights irrespective of the writing system used.
Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information
Wan, Ruyuan, Kim, Jaehyung, Kang, Dongyeop
In NLP annotation, it is common to have multiple annotators label the text and then obtain the ground truth labels based on the agreement of major annotators. However, annotators are individuals with different backgrounds, and minors' opinions should not be simply ignored. As annotation tasks become subjective and topics are controversial in modern NLP tasks, we need NLP systems that can represent people's diverse voices on subjective matters and predict the level of diversity. This paper examines whether the text of the task and annotators' demographic background information can be used to estimate the level of disagreement among annotators. Particularly, we extract disagreement labels from the annotators' voting histories in the five subjective datasets, and then fine-tune language models to predict annotators' disagreement. Our results show that knowing annotators' demographic information, like gender, ethnicity, and education level, helps predict disagreements. In order to distinguish the disagreement from the inherent controversy from text content and the disagreement in the annotators' different perspectives, we simulate everyone's voices with different combinations of annotators' artificial demographics and examine its variance of the finetuned disagreement predictor. Our paper aims to improve the annotation process for more efficient and inclusive NLP systems through a novel disagreement prediction mechanism. Our code and dataset are publicly available.
A Conversational Agent System for Dietary Supplements Use
Singh, Esha, Bompelli, Anu, Wan, Ruyuan, Bian, Jiang, Pakhomov, Serguei, Zhang, Rui
Conversational agent (CA) systems have been applied to healthcare domain, but there is no such a system to answer consumers regarding DS use, although widespread use of DS. In this study, we develop the first CA system for DS use. Methods: Our CA system for DS use developed on the MindeMeld framework, consists of three components: question understanding, DS knowledge base, and answer generation. We collected and annotated 1509 questions to develop natural language understanding module (e.g., question type classifier, named entity recognizer) which was then integrated into MindMeld framework. CA then queries the DS knowledge base (i.e., iDISK) and generates answers using rule-based slot filling techniques. We evaluated algorithms of each component and the CA system as a whole. Results: CNN is the best question classifier with F1 score of 0.81, and CRF is the best named entity recognizer with F1 score of 0.87. The system achieves an overall accuracy of 81% and an average score of 1.82 with succ@3 score as 76.2% and succ@2 as 66% approximately. Conclusion: This study develops the first CA system for DS use using MindMeld framework and iDISK domain knowledge base.
Social determinants of health in the era of artificial intelligence with electronic health records: A systematic review
Bompelli, Anusha, Wang, Yanshan, Wan, Ruyuan, Singh, Esha, Zhou, Yuqi, Xu, Lin, Oniani, David, Kshatriya, Bhavani Singh Agnikula, Joyce, null, Balls-Berry, E., Zhang, Rui
There is growing evidence showing the significant role of social determinant of health (SDOH) on a wide variety of health outcomes. In the era of artificial intelligence (AI), electronic health records (EHRs) have been widely used to conduct observational studies. However, how to make the best of SDOH information from EHRs is yet to be studied. In this paper, we systematically reviewed recently published papers and provided a methodology review of AI methods using the SDOH information in EHR data. A total of 1250 articles were retrieved from the literature between 2010 and 2020, and 74 papers were included in this review after abstract and full-text screening. We summarized these papers in terms of general characteristics (including publication years, venues, countries etc.), SDOH types, disease areas, study outcomes, AI methods to extract SDOH from EHRs and AI methods using SDOH for healthcare outcomes. Finally, we conclude this paper with discussion on the current trends, challenges, and future directions on using SDOH from EHRs.