Vizzo, Ignacio
KISS-SLAM: A Simple, Robust, and Accurate 3D LiDAR SLAM System With Enhanced Generalization Capabilities
Guadagnino, Tiziano, Mersch, Benedikt, Gupta, Saurabh, Vizzo, Ignacio, Grisetti, Giorgio, Stachniss, Cyrill
Robust and accurate localization and mapping of an environment using laser scanners, so-called LiDAR SLAM, is essential to many robotic applications. Early 3D LiDAR SLAM methods often exploited additional information from IMU or GNSS sensors to enhance localization accuracy and mitigate drift. Later, advanced systems further improved the estimation at the cost of a higher runtime and complexity. This paper explores the limits of what can be achieved with a LiDAR-only SLAM approach while following the "Keep It Small and Simple" (KISS) principle. By leveraging this minimalistic design principle, our system, KISS-SLAM, archives state-of-the-art performances in pose accuracy while requiring little to no parameter tuning for deployment across diverse environments, sensors, and motion profiles. We follow best practices in graph-based SLAM and build upon LiDAR odometry to compute the relative motion between scans and construct local maps of the environment. To correct drift, we match local maps and optimize the trajectory in a pose graph optimization step. The experimental results demonstrate that this design achieves competitive performance while reducing complexity and reliance on additional sensor modalities. By prioritizing simplicity, this work provides a new strong baseline for LiDAR-only SLAM and a high-performing starting point for future research. Further, our pipeline builds consistent maps that can be used directly for further downstream tasks like navigation. Our open-source system operates faster than the sensor frame rate in all presented datasets and is designed for real-world scenarios.
Kinematic-ICP: Enhancing LiDAR Odometry with Kinematic Constraints for Wheeled Mobile Robots Moving on Planar Surfaces
Guadagnino, Tiziano, Mersch, Benedikt, Vizzo, Ignacio, Gupta, Saurabh, Malladi, Meher V. R., Lobefaro, Luca, Doisy, Guillaume, Stachniss, Cyrill
LiDAR odometry is essential for many robotics applications, including 3D mapping, navigation, and simultaneous localization and mapping. LiDAR odometry systems are usually based on some form of point cloud registration to compute the ego-motion of a mobile robot. Yet, few of today's LiDAR odometry systems consider the domain-specific knowledge and the kinematic model of the mobile platform during the point cloud alignment. In this paper, we present Kinematic-ICP, a LiDAR odometry system that focuses on wheeled mobile robots equipped with a 3D LiDAR and moving on a planar surface, which is a common assumption for warehouses, offices, hospitals, etc. Our approach introduces kinematic constraints within the optimization of a traditional point-to-point iterative closest point scheme. In this way, the resulting motion follows the kinematic constraints of the platform, effectively exploiting the robot's wheel odometry and the 3D LiDAR observations. We dynamically adjust the influence of LiDAR measurements and wheel odometry in our optimization scheme, allowing the system to handle degenerate scenarios such as feature-poor corridors. We evaluate our approach on robots operating in large-scale warehouse environments, but also outdoors. The experiments show that our approach achieves top performances and is more accurate than wheel odometry and common LiDAR odometry systems. Kinematic-ICP has been recently deployed in the Dexory fleet of robots operating in warehouses worldwide at their customers' sites, showing that our method can run in the real world alongside a complete navigation stack.
KISS-Matcher: Fast and Robust Point Cloud Registration Revisited
Lim, Hyungtae, Kim, Daebeom, Shin, Gunhee, Shi, Jingnan, Vizzo, Ignacio, Myung, Hyun, Park, Jaesik, Carlone, Luca
While global point cloud registration systems have advanced significantly in all aspects, many studies have focused on specific components, such as feature extraction, graph-theoretic pruning, or pose solvers. In this paper, we take a holistic view on the registration problem and develop an open-source and versatile C++ library for point cloud registration, called \textit{KISS-Matcher}. KISS-Matcher combines a novel feature detector, \textit{Faster-PFH}, that improves over the classical fast point feature histogram (FPFH). Moreover, it adopts a $k$-core-based graph-theoretic pruning to reduce the time complexity of rejecting outlier correspondences. Finally, it combines these modules in a complete, user-friendly, and ready-to-use pipeline. As verified by extensive experiments, KISS-Matcher has superior scalability and broad applicability, achieving a substantial speed-up compared to state-of-the-art outlier-robust registration pipelines while preserving accuracy. Our code will be available at \href{https://github.com/MIT-SPARK/KISS-Matcher}{\texttt{https://github.com/MIT-SPARK/KISS-Matcher}}.
Building Volumetric Beliefs for Dynamic Environments Exploiting Map-Based Moving Object Segmentation
Mersch, Benedikt, Guadagnino, Tiziano, Chen, Xieyuanli, Vizzo, Ignacio, Behley, Jens, Stachniss, Cyrill
Mobile robots that navigate in unknown environments need to be constantly aware of the dynamic objects in their surroundings for mapping, localization, and planning. It is key to reason about moving objects in the current observation and at the same time to also update the internal model of the static world to ensure safety. In this paper, we address the problem of jointly estimating moving objects in the current 3D LiDAR scan and a local map of the environment. We use sparse 4D convolutions to extract spatio-temporal features from scan and local map and segment all 3D points into moving and non-moving ones. Additionally, we propose to fuse these predictions in a probabilistic representation of the dynamic environment using a Bayes filter. This volumetric belief models, which parts of the environment can be occupied by moving objects. Our experiments show that our approach outperforms existing moving object segmentation baselines and even generalizes to different types of LiDAR sensors. We demonstrate that our volumetric belief fusion can increase the precision and recall of moving object segmentation and even retrieve previously missed moving objects in an online mapping scenario.
KISS-ICP: In Defense of Point-to-Point ICP -- Simple, Accurate, and Robust Registration If Done the Right Way
Vizzo, Ignacio, Guadagnino, Tiziano, Mersch, Benedikt, Wiesmann, Louis, Behley, Jens, Stachniss, Cyrill
Robust and accurate pose estimation of a robotic platform, so-called sensor-based odometry, is an essential part of many robotic applications. While many sensor odometry systems made progress by adding more complexity to the ego-motion estimation process, we move in the opposite direction. By removing a majority of parts and focusing on the core elements, we obtain a surprisingly effective system that is simple to realize and can operate under various environmental conditions using different LiDAR sensors. Our odometry estimation approach relies on point-to-point ICP combined with adaptive thresholding for correspondence matching, a robust kernel, a simple but widely applicable motion compensation approach, and a point cloud subsampling strategy. This yields a system with only a few parameters that in most cases do not even have to be tuned to a specific LiDAR sensor. Our system using the same parameters performs on par with state-of-the-art methods under various operating conditions using different platforms: automotive platforms, UAV-based operation, vehicles like segways, or handheld LiDARs. We do not require integrating IMU information and solely rely on 3D point cloud data obtained from a wide range of 3D LiDAR sensors, thus, enabling a broad spectrum of different applications and operating conditions. Our open-source system operates faster than the sensor frame rate in all presented datasets and is designed for real-world scenarios.