Goto

Collaborating Authors

 Vischia, Pietro


Strategic White Paper on AI Infrastructure for Particle, Nuclear, and Astroparticle Physics: Insights from JENA and EuCAIF

arXiv.org Artificial Intelligence

Artificial intelligence (AI) is transforming scientific research, with deep learning methods playing a central role in data analysis, simulations, and signal detection across particle, nuclear, and astroparticle physics. Within the JENA communities-ECFA, NuPECC, and APPEC-and as part of the EuCAIF initiative, AI integration is advancing steadily. However, broader adoption remains constrained by challenges such as limited computational resources, a lack of expertise, and difficulties in transitioning from research and development (R&D) to production. This white paper provides a strategic roadmap, informed by a community survey, to address these barriers. It outlines critical infrastructure requirements, prioritizes training initiatives, and proposes funding strategies to scale AI capabilities across fundamental physics over the next five years.


Large Physics Models: Towards a collaborative approach with Large Language Models and Foundation Models

arXiv.org Artificial Intelligence

This paper explores ideas and provides a potential roadmap for the development and evaluation of physics-specific large-scale AI models, which we call Large Physics Models (LPMs). These models, based on foundation models such as Large Language Models (LLMs) - trained on broad data - are tailored to address the demands of physics research. LPMs can function independently or as part of an integrated framework. This framework can incorporate specialized tools, including symbolic reasoning modules for mathematical manipulations, frameworks to analyse specific experimental and simulated data, and mechanisms for synthesizing theories and scientific literature. We begin by examining whether the physics community should actively develop and refine dedicated models, rather than relying solely on commercial LLMs. We then outline how LPMs can be realized through interdisciplinary collaboration among experts in physics, computer science, and philosophy of science. To integrate these models effectively, we identify three key pillars: Development, Evaluation, and Philosophical Reflection. Development focuses on constructing models capable of processing physics texts, mathematical formulations, and diverse physical data. Evaluation assesses accuracy and reliability by testing and benchmarking. Finally, Philosophical Reflection encompasses the analysis of broader implications of LLMs in physics, including their potential to generate new scientific understanding and what novel collaboration dynamics might arise in research. Inspired by the organizational structure of experimental collaborations in particle physics, we propose a similarly interdisciplinary and collaborative approach to building and refining Large Physics Models. This roadmap provides specific objectives, defines pathways to achieve them, and identifies challenges that must be addressed to realise physics-specific large scale AI models.


TomOpt: Differential optimisation for task- and constraint-aware design of particle detectors in the context of muon tomography

arXiv.org Machine Learning

Over the past two decades, the availability of high-performance computing and the development of neural networks of larger capacity have conspired to fuel a revolution in the way we think at the optimisation of complex systems. When the dimensionality of the space of relevant design parameters exceeds a few units, and brute-force scans cease be a viable option for its exploration. We nowadays, have the option of letting automated systems find their way to configurations that correspond to advantageous extrema of carefully specified objective functions. The engine under the hood of these optimisation searches is automatic differentiation, which allows computer programs to keep track of the gradient of the objective function, through the chain rule of differential calculus, as computer code performs arbitrarily complex successions of operations to model the behaviour of the system. Crucial to a successful optimisation of the system is the inclusion in the model of all relevant effects that have an impact on the precision of the inference that the data generated by the system may produce. An incomplete description of the inference itself, or a mock up of the reconstruction techniques performing the dimensionality reduction step which translates raw data into high-level features informing the objective function, are likely to prevent the identification of designs that maximise the true objective, as they introduce a misalignment.


Applications and Techniques for Fast Machine Learning in Science

arXiv.org Artificial Intelligence

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.


Unfolding by Folding: a resampling approach to the problem of matrix inversion without actually inverting any matrix

arXiv.org Machine Learning

Matrix inversion problems are often encountered in experimental physics, and in particular in high-energy particle physics, under the name of unfolding. The true spectrum of a physical quantity is deformed by the presence of a detector, resulting in an observed spectrum. If we discretize both the true and observed spectra into histograms, we can model the detector response via a matrix. Inferring a true spectrum starting from an observed spectrum requires therefore inverting the response matrix. Many methods exist in literature for this task, all starting from the observed spectrum and using a simulated true spectrum as a guide to obtain a meaningful solution in cases where the response matrix is not easily invertible. In this Manuscript, I take a different approach to the unfolding problem. Rather than inverting the response matrix and transforming the observed distribution into the most likely parent distribution in generator space, I sample many distributions in generator space, fold them through the original response matrix, and pick the generator-level distribution that yields the folded distribution closest to the data distribution. Regularization schemes can be introduced to treat the case where non-diagonal response matrices result in high-frequency oscillations of the solution in true space, and the introduced bias is studied. The algorithm performs as well as traditional unfolding algorithms in cases where the inverse problem is well-defined in terms of the discretization of the true and smeared space, and outperforms them in cases where the inverse problem is ill-defined---when the number of truth-space bins is larger than that of smeared-space bins. These advantages stem from the fact that the algorithm does not technically invert any matrix and uses only the data distribution as a guide to choose the best solution.


The Inverse Bagging Algorithm: Anomaly Detection by Inverse Bootstrap Aggregating

arXiv.org Machine Learning

For data sets populated by a very well modeled process and by another process of unknown probability density function (PDF), a desired feature when manipulating the fraction of the unknown process (either for enhancing it or suppressing it) consists in avoiding to modify the kinematic distributions of the well modeled one. A bootstrap technique is used to identify sub-samples rich in the well modeled process, and classify each event according to the frequency of it being part of such sub-samples. Comparisons with general MVA algorithms will be shown, as well as a study of the asymptotic properties of the method, making use of a public domain data set that models a typical search for new physics as performed at hadronic colliders such as the Large Hadron Collider (LHC).