Goto

Collaborating Authors

 Vinzamuri, Bhanukiran


LUME: LLM Unlearning with Multitask Evaluations

arXiv.org Artificial Intelligence

Unlearning aims to remove copyrighted, sensitive, or private content from large language models (LLMs) without a full retraining. In this work, we develop a multi-task unlearning benchmark (LUME) which features three tasks: (1) unlearn synthetically generated creative short novels, (2) unlearn synthetic biographies with sensitive information, and (3) unlearn a collection of public biographies. We further release two fine-tuned LLMs of 1B and 7B parameter sizes as the target models. We conduct detailed evaluations of several recently proposed unlearning algorithms and present results on carefully crafted metrics to understand their behavior and limitations.


Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate

arXiv.org Artificial Intelligence

Machine unlearning has been used to remove unwanted knowledge acquired by large language models (LLMs). In this paper, we examine machine unlearning from an optimization perspective, framing it as a regularized multi-task optimization problem, where one task optimizes a forgetting objective and another optimizes the model performance. In particular, we introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives, while integrating a new, automatic learning rate scheduler. We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets while exhibiting stable training.


Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines

arXiv.org Machine Learning

The dearth of prescribing guidelines for physicians is one key driver of the current opioid epidemic in the United States. In this work, we analyze medical and pharmaceutical claims data to draw insights on characteristics of patients who are more prone to adverse outcomes after an initial synthetic opioid prescription. Toward this end, we propose a generative model that allows discovery from observational data of subgroups that demonstrate an enhanced or diminished causal effect due to treatment. Our approach models these sub-populations as a mixture distribution, using sparsity to enhance interpretability, while jointly learning nonlinear predictors of the potential outcomes to better adjust for confounding. The approach leads to human-interpretable insights on discovered subgroups, improving the practical utility for decision support


Is Ordered Weighted $\ell_1$ Regularized Regression Robust to Adversarial Perturbation? A Case Study on OSCAR

arXiv.org Machine Learning

Many state-of-the-art machine learning models such as deep neural networks have recently shown to be vulnerable to adversarial perturbations, especially in classification tasks. Motivated by adversarial machine learning, in this paper we investigate the robustness of sparse regression models with strongly correlated covariates to adversarially designed measurement noises. Specifically, we consider the family of ordered weighted $\ell_1$ (OWL) regularized regression methods and study the case of OSCAR (octagonal shrinkage clustering algorithm for regression) in the adversarial setting. Under a norm-bounded threat model, we formulate the process of finding a maximally disruptive noise for OWL-regularized regression as an optimization problem and illustrate the steps towards finding such a noise in the case of OSCAR. Experimental results demonstrate that the regression performance of grouping strongly correlated features can be severely degraded under our adversarial setting, even when the noise budget is significantly smaller than the ground-truth signals.


Structure Learning from Time Series with False Discovery Control

arXiv.org Machine Learning

We consider the Granger causal structure learning problem from time series data. Granger causal algorithms predict a 'Granger causal effect' between two variables by testing if prediction error of one decreases significantly in the absence of the other variable among the predictor covariates. Almost all existing Granger causal algorithms condition on a large number of variables (all but two variables) to test for effects between a pair of variables. We propose a new structure learning algorithm called MMPC-p inspired by the well known MMHC algorithm for non-time series data. We show that under some assumptions, the algorithm provides false discovery rate control. The algorithm is sound and complete when given access to perfect directed information testing oracles. We also outline a novel tester for the linear Gaussian case. We show through our extensive experiments that the MMPC-p algorithm scales to larger problems and has improved statistical power compared to existing state of the art for large sparse graphs. We also apply our algorithm on a global development dataset and validate our findings with subject matter experts.


Optimized Pre-Processing for Discrimination Prevention

Neural Information Processing Systems

Non-discrimination is a recognized objective in algorithmic decision making. In this paper, we introduce a novel probabilistic formulation of data pre-processing for reducing discrimination. We propose a convex optimization for learning a data transformation with three goals: controlling discrimination, limiting distortion in individual data samples, and preserving utility. We characterize the impact of limited sample size in accomplishing this objective. Two instances of the proposed optimization are applied to datasets, including one on real-world criminal recidivism. Results show that discrimination can be greatly reduced at a small cost in classification accuracy.


Personalized Recommendation of Twitter Lists using Content and Network Information

AAAI Conferences

Lists in social networks have become popular tools to orga-nize content. This paper proposes a novel framework for rec-ommending lists to users by combining several features thatjointly capture their personal interests. Our contribution is oftwo-fold. First, we develop a ListRec model that leveragesthe dynamically varying tweet content, the network of twitterers and the popularity of lists to collectively model the users’preference towards social lists. Second, we use the topicalinterests of users, and the list network structure to developa novel network-based model called the LIST-PAGERANK.We use this model to recommend auxiliary lists that are morepopular than the lists that are currently subscribed by theusers. We evaluate our ListRec model using the Twitterdataset consisting of 2988 direct list subscriptions. Using au-tomatic evaluation technique, we compare the performanceof the ListRec model with different baseline methods andother competing approaches and show that our model deliversbetter precision in terms of the prediction of the subscribedlists of the twitterers. Furthermore, we also demonstrate the importance of combining different weighting schemes andtheir effect on capturing users’ interest towards Twitter lists.To evaluate the LIST-PAGERANK model, we employ a user-study based evaluation to show that the model is effective inrecommending auxiliary lists that are more authoritative thanthe lists subscribed by the users.