Goto

Collaborating Authors

 Vinayak, Ramya Korlakai


PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences

arXiv.org Artificial Intelligence

Large foundation models pretrained on raw web-scale data are not readily deployable without additional step of extensive alignment to human preferences. Such alignment is typically done by collecting large amounts of pairwise comparisons from humans ("Do you prefer output A or B?") and learning a reward model or a policy with the Bradley-Terry-Luce (BTL) model as a proxy for a human's underlying implicit preferences. These methods generally suffer from assuming a universal preference shared by all humans, which lacks the flexibility of adapting to plurality of opinions and preferences. In this work, we propose PAL, a framework to model human preference complementary to existing pretraining strategies, which incorporates plurality from the ground up. We propose using the ideal point model as a lens to view alignment using preference comparisons. Together with our novel reformulation and using mixture modeling, our framework captures the plurality of population preferences while simultaneously learning a common preference latent space across different preferences, which can few-shot generalize to new, unseen users. Our approach enables us to use the penultimate-layer representation of large foundation models and simple MLP layers to learn reward functions that are on-par with the existing large state-of-the-art reward models, thereby enhancing efficiency of reward modeling significantly. We show that PAL achieves competitive reward model accuracy compared to strong baselines on 1) Language models with Summary dataset ; 2) Image Generative models with Pick-a-Pic dataset ; 3) A new semisynthetic heterogeneous dataset generated using Anthropic Personas. Finally, our experiments also highlight the shortcoming of current preference datasets that are created using rigid rubrics which wash away heterogeneity, and call for more nuanced data collection approaches.


Taming False Positives in Out-of-Distribution Detection with Human Feedback

arXiv.org Machine Learning

Robustness to out-of-distribution (OOD) samples is crucial for safely deploying machine learning models in the open world. Recent works have focused on designing scoring functions to quantify OOD uncertainty. Setting appropriate thresholds for these scoring functions for OOD detection is challenging as OOD samples are often unavailable up front. Typically, thresholds are set to achieve a desired true positive rate (TPR), e.g., $95\%$ TPR. However, this can lead to very high false positive rates (FPR), ranging from 60 to 96\%, as observed in the Open-OOD benchmark. In safety-critical real-life applications, e.g., medical diagnosis, controlling the FPR is essential when dealing with various OOD samples dynamically. To address these challenges, we propose a mathematically grounded OOD detection framework that leverages expert feedback to \emph{safely} update the threshold on the fly. We provide theoretical results showing that it is guaranteed to meet the FPR constraint at all times while minimizing the use of human feedback. Another key feature of our framework is that it can work with any scoring function for OOD uncertainty quantification. Empirical evaluation of our system on synthetic and benchmark OOD datasets shows that our method can maintain FPR at most $5\%$ while maximizing TPR.


Pearls from Pebbles: Improved Confidence Functions for Auto-labeling

arXiv.org Machine Learning

Auto-labeling is an important family of techniques that produce labeled training sets with minimum manual labeling. A prominent variant, threshold-based auto-labeling (TBAL), works by finding a threshold on a model's confidence scores above which it can accurately label unlabeled data points. However, many models are known to produce overconfident scores, leading to poor TBAL performance. While a natural idea is to apply off-the-shelf calibration methods to alleviate the overconfidence issue, such methods still fall short. Rather than experimenting with ad-hoc choices of confidence functions, we propose a framework for studying the \emph{optimal} TBAL confidence function. We develop a tractable version of the framework to obtain \texttt{Colander} (Confidence functions for Efficient and Reliable Auto-labeling), a new post-hoc method specifically designed to maximize performance in TBAL systems. We perform an extensive empirical evaluation of our method \texttt{Colander} and compare it against methods designed for calibration. \texttt{Colander} achieves up to 60\% improvements on coverage over the baselines while maintaining auto-labeling error below $5\%$ and using the same amount of labeled data as the baselines.


Metric Learning from Limited Pairwise Preference Comparisons

arXiv.org Machine Learning

We study metric learning from preference comparisons under the ideal point model, in which a user prefers an item over another if it is closer to their latent ideal item. These items are embedded into $\mathbb{R}^d$ equipped with an unknown Mahalanobis distance shared across users. While recent work shows that it is possible to simultaneously recover the metric and ideal items given $\mathcal{O}(d)$ pairwise comparisons per user, in practice we often have a limited budget of $o(d)$ comparisons. We study whether the metric can still be recovered, even though it is known that learning individual ideal items is now no longer possible. We show that in general, $o(d)$ comparisons reveals no information about the metric, even with infinitely many users. However, when comparisons are made over items that exhibit low-dimensional structure, each user can contribute to learning the metric restricted to a low-dimensional subspace so that the metric can be jointly identified. We present a divide-and-conquer approach that achieves this, and provide theoretical recovery guarantees and empirical validation.


Limitations of Face Image Generation

arXiv.org Artificial Intelligence

Text-to-image diffusion models have achieved widespread popularity due to their unprecedented image generation capability. In particular, their ability to synthesize and modify human faces has spurred research into using generated face images in both training data augmentation and model performance assessments. In this paper, we study the efficacy and shortcomings of generative models in the context of face generation. Utilizing a combination of qualitative and quantitative measures, including embedding-based metrics and user studies, we present a framework to audit the characteristics of generated faces conditioned on a set of social attributes. We applied our framework on faces generated through state-of-the-art text-to-image diffusion models. We identify several limitations of face image generation that include faithfulness to the text prompt, demographic disparities, and distributional shifts. Furthermore, we present an analytical model that provides insights into how training data selection contributes to the performance of generative models.


Good Data from Bad Models : Foundations of Threshold-based Auto-labeling

arXiv.org Artificial Intelligence

Creating large-scale high-quality labeled datasets is a major bottleneck in supervised machine learning workflows. Auto-labeling systems are a promising way to reduce reliance on manual labeling for dataset construction. Threshold-based auto-labeling, where validation data obtained from humans is used to find a threshold for confidence above which the data is machine-labeled, is emerging as a popular solution used widely in practice. Given the long shelf-life and diverse usage of the resulting datasets, understanding when the data obtained by such auto-labeling systems can be relied on is crucial. In this work, we analyze threshold-based auto-labeling systems and derive sample complexity bounds on the amount of human-labeled validation data required for guaranteeing the quality of machine-labeled data. Our results provide two insights. First, reasonable chunks of the unlabeled data can be automatically and accurately labeled by seemingly bad models. Second, a hidden downside of threshold-based auto-labeling systems is potentially prohibitive validation data usage. Together, these insights describe the promise and pitfalls of using such systems. We validate our theoretical guarantees with simulations and study the efficacy of threshold-based auto-labeling on real datasets.


Fisher-Pitman permutation tests based on nonparametric Poisson mixtures with application to single cell genomics

arXiv.org Machine Learning

This paper investigates the theoretical and empirical performance of Fisher-Pitman-type permutation tests for assessing the equality of unknown Poisson mixture distributions. Building on nonparametric maximum likelihood estimators (NPMLEs) of the mixing distribution, these tests are theoretically shown to be able to adapt to complicated unspecified structures of count data and also consistent against their corresponding ANOVA-type alternatives; the latter is a result in parallel to classic claims made by Robinson (Robinson, 1973). The studied methods are then applied to a single-cell RNA-seq data obtained from different cell types from brain samples of autism subjects and healthy controls; empirically, they unveil genes that are differentially expressed between autism and control subjects yet are missed using common tests. For justifying their use, rate optimality of NPMLEs is also established in settings similar to nonparametric Gaussian (Wu and Yang, 2020a) and binomial mixtures (Tian et al., 2017; Vinayak et al., 2019).


Graph Clustering With Missing Data: Convex Algorithms and Analysis

Neural Information Processing Systems

We consider the problem of finding clusters in an unweighted graph, when the graph is partially observed. We analyze two programs, one which works for dense graphs and one which works for both sparse and dense graphs, but requires some a priori knowledge of the total cluster size, that are based on the convex optimization approach for low-rank matrix recovery using nuclear norm minimization. For the commonly used Stochastic Block Model, we obtain \emph{explicit} bounds on the parameters of the problem (size and sparsity of clusters, the amount of observed data) and the regularization parameter characterize the success and failure of the programs. We corroborate our theoretical findings through extensive simulations. We also run our algorithm on a real data set obtained from crowdsourcing an image classification task on the Amazon Mechanical Turk, and observe significant performance improvement over traditional methods such as k-means.


Maximum Likelihood Estimation for Learning Populations of Parameters

arXiv.org Machine Learning

Consider a setting with $N$ independent individuals, each with an unknown parameter, $p_i \in [0, 1]$ drawn from some unknown distribution $P^\star$. After observing the outcomes of $t$ independent Bernoulli trials, i.e., $X_i \sim \text{Binomial}(t, p_i)$ per individual, our objective is to accurately estimate $P^\star$. This problem arises in numerous domains, including the social sciences, psychology, health-care, and biology, where the size of the population under study is usually large while the number of observations per individual is often limited. Our main result shows that, in the regime where $t \ll N$, the maximum likelihood estimator (MLE) is both statistically minimax optimal and efficiently computable. Precisely, for sufficiently large $N$, the MLE achieves the information theoretic optimal error bound of $\mathcal{O}(\frac{1}{t})$ for $t < c\log{N}$, with regards to the earth mover's distance (between the estimated and true distributions). More generally, in an exponentially large interval of $t$ beyond $c \log{N}$, the MLE achieves the minimax error bound of $\mathcal{O}(\frac{1}{\sqrt{t\log N}})$. In contrast, regardless of how large $N$ is, the naive "plug-in" estimator for this problem only achieves the sub-optimal error of $\Theta(\frac{1}{\sqrt{t}})$.


Crowdsourced Clustering: Querying Edges vs Triangles

Neural Information Processing Systems

We consider the task of clustering items using answers from non-expert crowd workers. In such cases, the workers are often not able to label the items directly, however, it is reasonable to assume that they can compare items and judge whether they are similar or not. An important question is what queries to make, and we compare two types: random edge queries, where a pair of items is revealed, and random triangles, where a triple is. Since it is far too expensive to query all possible edges and/or triangles, we need to work with partial observations subject to a fixed query budget constraint. When a generative model for the data is available (and we consider a few of these) we determine the cost of a query by its entropy; when such models do not exist we use the average response time per query of the workers as a surrogate for the cost. In addition to theoretical justification, through several simulations and experiments on two real data sets on Amazon Mechanical Turk, we empirically demonstrate that, for a fixed budget, triangle queries uniformly outperform edge queries. Even though, in contrast to edge queries, triangle queries reveal dependent edges, they provide more reliable edges and, for a fixed budget, many more of them. We also provide a sufficient condition on the number of observations, edge densities inside and outside the clusters and the minimum cluster size required for the exact recovery of the true adjacency matrix via triangle queries using a convex optimization-based clustering algorithm.