Goto

Collaborating Authors

 Verschure, Paul


High-fidelity social learning via shared episodic memories enhances collaborative foraging through mnemonic convergence

arXiv.org Artificial Intelligence

Social learning, a cornerstone of cultural evolution, enables individuals to acquire knowledge by observing and imitating others. At the heart of its efficacy lies episodic memory, which encodes specific behavioral sequences to facilitate learning and decision-making. This study explores the interrelation between episodic memory and social learning in collective foraging. Using Sequential Episodic Control (SEC) agents capable of sharing complete behavioral sequences stored in episodic memory, we investigate how variations in the frequency and fidelity of social learning influence collaborative foraging performance. Furthermore, we analyze the effects of social learning on the content and distribution of episodic memories across the group. High-fidelity social learning is shown to consistently enhance resource collection efficiency and distribution, with benefits sustained across memory lengths. In contrast, low-fidelity learning fails to outperform nonsocial learning, spreading diverse but ineffective mnemonic patterns. Novel analyses using mnemonic metrics reveal that high-fidelity social learning also fosters mnemonic group alignment and equitable resource distribution, while low-fidelity conditions increase mnemonic diversity without translating to performance gains. Additionally, we identify an optimal range for episodic memory length in this task, beyond which performance plateaus. These findings underscore the critical effects of social learning on mnemonic group alignment and distribution and highlight the potential of neurocomputational models to probe the cognitive mechanisms driving cultural evolution.


Awareness in robotics: An early perspective from the viewpoint of the EIC Pathfinder Challenge "Awareness Inside''

arXiv.org Artificial Intelligence

Consciousness has been historically a heavily debated topic in engineering, science, and philosophy. On the contrary, awareness had less success in raising the interest of scholars in the past. However, things are changing as more and more researchers are getting interested in answering questions concerning what awareness is and how it can be artificially generated. The landscape is rapidly evolving, with multiple voices and interpretations of the concept being conceived and techniques being developed. The goal of this paper is to summarize and discuss the ones among these voices that are connected with projects funded by the EIC Pathfinder Challenge called "Awareness Inside", a nonrecurring call for proposals within Horizon Europe that was designed specifically for fostering research on natural and synthetic awareness. In this perspective, we dedicate special attention to challenges and promises of applying synthetic awareness in robotics, as the development of mature techniques in this new field is expected to have a special impact on generating more capable and trustworthy embodied systems.


Distributed Adaptive Control: An ideal Cognitive Architecture candidate for managing a robotic recycling plant

arXiv.org Artificial Intelligence

In the past decade, society has experienced notable growth in a variety of technological areas. However, the Fourth Industrial Revolution has not been embraced yet. Industry 4.0 imposes several challenges which include the necessity of new architectural models to tackle the uncertainty that open environments represent to cyber-physical systems (CPS). Waste Electrical and Electronic Equipment (WEEE) recycling plants stand for one of such open environments. Here, CPSs must work harmoniously in a changing environment, interacting with similar and not so similar CPSs, and adaptively collaborating with human workers. In this paper, we support the Distributed Adaptive Control (DAC) theory as a suitable Cognitive Architecture for managing a recycling plant. Specifically, a recursive implementation of DAC (between both singleagent and large-scale levels) is proposed to meet the expected demands of the European Project HR-Recycler. Additionally, with the aim of having a realistic benchmark for future implementations of the recursive DAC, a micro-recycling plant prototype is presented. Keywords: Cognitive Architecture, Distributed Adaptive Control, Recycling Plant, Navigation, Motor Control, Human-Robot Interaction.


Modeling Theory of Mind in Multi-Agent Games Using Adaptive Feedback Control

arXiv.org Artificial Intelligence

A major challenge in cognitive science and AI has been to understand how autonomous agents might acquire and predict behavioral and mental states of other agents in the course of complex social interactions. How does such an agent model the goals, beliefs, and actions of other agents it interacts with? What are the computational principles to model a Theory of Mind (ToM)? Deep learning approaches to address these questions fall short of a better understanding of the problem. In part, this is due to the black-box nature of deep networks, wherein computational mechanisms of ToM are not readily revealed. Here, we consider alternative hypotheses seeking to model how the brain might realize a ToM. In particular, we propose embodied and situated agent models based on distributed adaptive control theory to predict actions of other agents in five different game theoretic tasks (Harmony Game, Hawk-Dove, Stag-Hunt, Prisoner's Dilemma and Battle of the Exes). Our multi-layer control models implement top-down predictions from adaptive to reactive layers of control and bottom-up error feedback from reactive to adaptive layers. We test cooperative and competitive strategies among seven different agent models (cooperative, greedy, tit-for-tat, reinforcement-based, rational, predictive and other's-model agents). We show that, compared to pure reinforcement-based strategies, probabilistic learning agents modeled on rational, predictive and other's-model phenotypes perform better in game-theoretic metrics across tasks. Our autonomous multi-agent models capture systems-level processes underlying a ToM and highlight architectural principles of ToM from a control-theoretic perspective.


The Morphospace of Consciousness

arXiv.org Artificial Intelligence

We construct a complexity-based morphospace to study systems-level properties of conscious & intelligent systems. The axes of this space label 3 complexity types: autonomous, cognitive & social. Given recent proposals to synthesize consciousness, a generic complexity-based conceptualization provides a useful framework for identifying defining features of conscious & synthetic systems. Based on current clinical scales of consciousness that measure cognitive awareness and wakefulness, we take a perspective on how contemporary artificially intelligent machines & synthetically engineered life forms measure on these scales. It turns out that awareness & wakefulness can be associated to computational & autonomous complexity respectively. Subsequently, building on insights from cognitive robotics, we examine the function that consciousness serves, & argue the role of consciousness as an evolutionary game-theoretic strategy. This makes the case for a third type of complexity for describing consciousness: social complexity. Having identified these complexity types, allows for a representation of both, biological & synthetic systems in a common morphospace. A consequence of this classification is a taxonomy of possible conscious machines. We identify four types of consciousness, based on embodiment: (i) biological consciousness, (ii) synthetic consciousness, (iii) group consciousness (resulting from group interactions), & (iv) simulated consciousness (embodied by virtual agents within a simulated reality). This taxonomy helps in the investigation of comparative signatures of consciousness across domains, in order to highlight design principles necessary to engineer conscious machines. This is particularly relevant in the light of recent developments at the crossroads of cognitive neuroscience, biomedical engineering, artificial intelligence & biomimetics.


Modeling the Formation of Social Conventions in Multi-Agent Populations

arXiv.org Machine Learning

In order to understand the formation of social conventions we need to know the specific role of control and learning in multi-agent systems. To advance in this direction, we propose, within the framework of the Distributed Adaptive Control (DAC) theory, a novel Control-based Reinforcement Learning architecture (CRL) that can account for the acquisition of social conventions in multi-agent populations that are solving a benchmark social decision-making problem. Our new CRL architecture, as a concrete realization of DAC multi-agent theory, implements a low-level sensorimotor control loop handling the agent's reactive behaviors (pre-wired reflexes), along with a layer based on model-free reinforcement learning that maximizes long-term reward. We apply CRL in a multi-agent game-theoretic task in which coordination must be achieved in order to find an optimal solution. We show that our CRL architecture is able to both find optimal solutions in discrete and continuous time and reproduce human experimental data on standard game-theoretic metrics such as efficiency in acquiring rewards, fairness in reward distribution and stability of convention formation.


A forward model at Purkinje cell synapses facilitates cerebellar anticipatory control

Neural Information Processing Systems

How does our motor system solve the problem of anticipatory control in spite of a wide spectrum of response dynamics from different musculo-skeletal systems, transport delays as well as response latencies throughout the central nervous system? To a great extent, our highly-skilled motor responses are a result of a reactive feedback system, originating in the brain-stem and spinal cord, combined with a feed-forward anticipatory system, that is adaptively fine-tuned by sensory experience and originates in the cerebellum. Based on that interaction we design the counterfactual predictive control (CFPC) architecture, an anticipatory adaptive motor control scheme in which a feed-forward module, based on the cerebellum, steers an error feedback controller with counterfactual error signals. Those are signals that trigger reactions as actual errors would, but that do not code for any current of forthcoming errors. In order to determine the optimal learning strategy, we derive a novel learning rule for the feed-forward module that involves an eligibility trace and operates at the synaptic level. In particular, our eligibility trace provides a mechanism beyond co-incidence detection in that it convolves a history of prior synaptic inputs with error signals. In the context of cerebellar physiology, this solution implies that Purkinje cell synapses should generate eligibility traces using a forward model of the system being controlled. From an engineering perspective, CFPC provides a general-purpose anticipatory control architecture equipped with a learning rule that exploits the full dynamics of the closed-loop system.