Goto

Collaborating Authors

 Veit, Andreas


Efficient Document Ranking with Learnable Late Interactions

arXiv.org Machine Learning

Cross-Encoder (CE) and Dual-Encoder (DE) models are two fundamental approaches for query-document relevance in information retrieval. To predict relevance, CE models use joint query-document embeddings, while DE models maintain factorized query and document embeddings; usually, the former has higher quality while the latter benefits from lower latency. Recently, late-interaction models have been proposed to realize more favorable latency-quality tradeoffs, by using a DE structure followed by a lightweight scorer based on query and document token embeddings. However, these lightweight scorers are often hand-crafted, and there is no understanding of their approximation power; further, such scorers require access to individual document token embeddings, which imposes an increased latency and storage burden. In this paper, we propose novel learnable late-interaction models (LITE) that resolve these issues. Theoretically, we prove that LITE is a universal approximator of continuous scoring functions, even for relatively small embedding dimension. Empirically, LITE outperforms previous late-interaction models such as ColBERT on both in-domain and zero-shot re-ranking tasks. For instance, experiments on MS MARCO passage re-ranking show that LITE not only yields a model with better generalization, but also lowers latency and requires 0.25x storage compared to ColBERT.


MarkovGen: Structured Prediction for Efficient Text-to-Image Generation

arXiv.org Artificial Intelligence

Modern text-to-image generation models produce high-quality images that are both photorealistic and faithful to the text prompts. However, this quality comes at significant computational cost: nearly all of these models are iterative and require running sampling multiple times with large models. This iterative process is needed to ensure that different regions of the image are not only aligned with the text prompt, but also compatible with each other. In this work, we propose a light-weight approach to achieving this compatibility between different regions of an image, using a Markov Random Field (MRF) model. We demonstrate the effectiveness of this method on top of the latent token-based Muse text-to-image model. The MRF richly encodes the compatibility among image tokens at different spatial locations to improve quality and significantly reduce the required number of Muse sampling steps. Inference with the MRF is significantly cheaper, and its parameters can be quickly learned through back-propagation by modeling MRF inference as a differentiable neural-network layer. Our full model, MarkovGen, uses this proposed MRF model to both speed up Muse by 1.5X and produce higher quality images by decreasing undesirable image artifacts.


Understanding Robustness of Transformers for Image Classification

arXiv.org Artificial Intelligence

Deep Convolutional Neural Networks (CNNs) have long been the architecture of choice for computer vision tasks. Recently, Transformer-based architectures like Vision Transformer (ViT) have matched or even surpassed ResNets for image classification. However, details of the Transformer architecture -- such as the use of non-overlapping patches -- lead one to wonder whether these networks are as robust. In this paper, we perform an extensive study of a variety of different measures of robustness of ViT models and compare the findings to ResNet baselines. We investigate robustness to input perturbations as well as robustness to model perturbations. We find that when pre-trained with a sufficient amount of data, ViT models are at least as robust as the ResNet counterparts on a broad range of perturbations. We also find that Transformers are robust to the removal of almost any single layer, and that while activations from later layers are highly correlated with each other, they nevertheless play an important role in classification.


Long-tail learning via logit adjustment

arXiv.org Machine Learning

Real-world classification problems typically exhibit an imbalanced or long-tailed label distribution, wherein many labels are associated with only a few samples. This poses a challenge for generalisation on such labels, and also makes na\"ive learning biased towards dominant labels. In this paper, we present two simple modifications of standard softmax cross-entropy training to cope with these challenges. Our techniques revisit the classic idea of logit adjustment based on the label frequencies, either applied post-hoc to a trained model, or enforced in the loss during training. Such adjustment encourages a large relative margin between logits of rare versus dominant labels. These techniques unify and generalise several recent proposals in the literature, while possessing firmer statistical grounding and empirical performance.


Semantic Segmentation with Scarce Data

arXiv.org Artificial Intelligence

Semantic segmentation is a challenging vision problem that usually necessitates the collection of large amounts of finely annotated data, which is often quite expensive to obtain. Coarsely annotated data provides an interesting alternative as it is usually substantially more cheap. In this work, we present a method to leverage coarsely annotated data along with fine supervision to produce better segmentation results than would be obtained when training using only the fine data. We validate our approach by simulating a scarce data setting with less than 200 low resolution images from the Cityscapes dataset and show that our method substantially outperforms solely training on the fine annotation data by an average of 15.52% mIoU and outperforms the coarse mask by an average of 5.28% mIoU.


Deep Learning is Robust to Massive Label Noise

arXiv.org Artificial Intelligence

Deep neural networks trained on large supervised datasets have led to impressive results in image classification and other tasks. However, well-annotated datasets can be time-consuming and expensive to collect, lending increased interest to larger but noisy datasets that are more easily obtained. In this paper, we show that deep neural networks are capable of generalizing from training data for which true labels are massively outnumbered by incorrect labels. We demonstrate remarkably high test performance after training on corrupted data from MNIST, CIFAR, and ImageNet. For example, on MNIST we obtain test accuracy above 90 percent even after each clean training example has been diluted with 100 randomly-labeled examples. Such behavior holds across multiple patterns of label noise, even when erroneous labels are biased towards confusing classes. We show that training in this regime requires a significant but manageable increase in dataset size that is related to the factor by which correct labels have been diluted. Finally, we provide an analysis of our results that shows how increasing noise decreases the effective batch size.


Conditional Similarity Networks

arXiv.org Artificial Intelligence

What makes images similar? To measure the similarity between images, they are typically embedded in a feature-vector space, in which their distance preserve the relative dissimilarity. However, when learning such similarity embeddings the simplifying assumption is commonly made that images are only compared to one unique measure of similarity. A main reason for this is that contradicting notions of similarities cannot be captured in a single space. To address this shortcoming, we propose Conditional Similarity Networks (CSNs) that learn embeddings differentiated into semantically distinct subspaces that capture the different notions of similarities. CSNs jointly learn a disentangled embedding where features for different similarities are encoded in separate dimensions as well as masks that select and reweight relevant dimensions to induce a subspace that encodes a specific similarity notion. We show that our approach learns interpretable image representations with visually relevant semantic subspaces. Further, when evaluating on triplet questions from multiple similarity notions our model even outperforms the accuracy obtained by training individual specialized networks for each notion separately.


Residual Networks Behave Like Ensembles of Relatively Shallow Networks

Neural Information Processing Systems

In this work we propose a novel interpretation of residual networks showing that they can be seen as a collection of many paths of differing length. Moreover, residual networks seem to enable very deep networks by leveraging only the short paths during training. To support this observation, we rewrite residual networks as an explicit collection of paths. Unlike traditional models, paths through residual networks vary in length. Further, a lesion study reveals that these paths show ensemble-like behavior in the sense that they do not strongly depend on each other. Finally, and most surprising, most paths are shorter than one might expect, and only the short paths are needed during training, as longer paths do not contribute any gradient. For example, most of the gradient in a residual network with 110 layers comes from paths that are only 10-34 layers deep. Our results reveal one of the key characteristics that seem to enable the training of very deep networks: Residual networks avoid the vanishing gradient problem by introducing short paths which can carry gradient throughout the extent of very deep networks.


Residual Networks Behave Like Ensembles of Relatively Shallow Networks

arXiv.org Artificial Intelligence

In this work we propose a novel interpretation of residual networks showing that they can be seen as a collection of many paths of differing length. Moreover, residual networks seem to enable very deep networks by leveraging only the short paths during training. To support this observation, we rewrite residual networks as an explicit collection of paths. Unlike traditional models, paths through residual networks vary in length. Further, a lesion study reveals that these paths show ensemble-like behavior in the sense that they do not strongly depend on each other. Finally, and most surprising, most paths are shorter than one might expect, and only the short paths are needed during training, as longer paths do not contribute any gradient. For example, most of the gradient in a residual network with 110 layers comes from paths that are only 10-34 layers deep. Our results reveal one of the key characteristics that seem to enable the training of very deep networks: Residual networks avoid the vanishing gradient problem by introducing short paths which can carry gradient throughout the extent of very deep networks.


Multiagent Coordination for Energy Consumption Scheduling in Consumer Cooperatives

AAAI Conferences

A key challenge to create a sustainable and energy-efficient society is in making consumer demand adaptive to energy supply, especially renewable supply. In this paper, we propose a partially-centralized organization of consumers, namely, a consumer cooperative for purchasing electricity from the market. We propose a novel multiagent coordination algorithm to shape the energy consumption of the cooperative. In the cooperative, a central coordinator buys the electricity for the whole group and consumers make their own consumption decisions based on their private consumption constraints and preferences. To coordinate individual consumers under incomplete information, we propose an iterative algorithm in which a virtual price signal is sent by the coordinator to induce consumers to shift demand. We prove that our algorithm converges to the central optimal solution. Additionally we analyze the convergence rate of the algorithm via simulations on randomly generated instances. The results indicate scalability with respect to the number of agents and consumption slots.