Plotting

 Vantini, Simone


Noise-Adaptive Conformal Classification with Marginal Coverage

arXiv.org Machine Learning

Conformal inference seeks rigorous uncertainty quantification for the predictions of any black-box machine learning model, without requiring parametric assumptions (Vovk et al., 2005). In classification, these methods aim to construct a prediction set for the label of a new test point while guaranteeing a specified coverage level. The split-conformal approach achieves this by leveraging residuals (or non-conformity scores) from a pre-trained model applied to an independent calibration data set, assuming exchangeability with the test data. Perfect exchangeability, however, may not always hold in practice, due for example to possible distribution shifts between the available data and the future test points of interest, creating a need to relax the assumptions underlying conformal inference (Barber et al., 2023).


Conformal Prediction Bands for Two-Dimensional Functional Time Series

arXiv.org Machine Learning

Functional data analysis (FDA) (Ramsay and Silverman 2005) is naturally apt to represent and model this kind of data, as it allows preserving their continuous nature, and provides a rigorous mathematical framework. Among the others, Zhou and Pan 2014 analyzed temperature surfaces, presenting two approaches for Functional Principal Component Analysis (FPCA) of functions defined on a non-rectangular domain, Porro-Muรฑoz et al. 2014 focuses on image processing using FDA, while a novel regularization technique for Gaussian random fields on a rectangular domain has been proposed by Rakรชt 2010 and applied to 2D electrophoresis images. Another bivariate smoothing approach in a penalized regression framework has been introduced by Ivanescu and Andrada 2013, allowing for the estimation of functional parameters of two-dimensional functional data. As shown by Gervini 2010, even mortality rates can be interpreted as two-dimensional functional data. Whereas in all the reviewed works functions are assumed to be realization of iid or at least exchangeable random objects, to the best of our knowledge there is no literature focusing on forecasting time-dependent two-dimensional functional data. In this work, we focus on time series of surfaces, representing them as two-dimensional Functional Time Series (FTS).


funLOCI: a local clustering algorithm for functional data

arXiv.org Machine Learning

Nowadays, more and more problems are dealing with data with one infinite continuous dimension: functional data. In this paper, we introduce the funLOCI algorithm which allows to identify functional local clusters or functional loci, i.e., subsets/groups of functions exhibiting similar behaviour across the same continuous subset of the domain. The definition of functional local clusters leverages ideas from multivariate and functional clustering and biclustering and it is based on an additive model which takes into account the shape of the curves. funLOCI is a three-step algorithm based on divisive hierarchical clustering. The use of dendrograms allows to visualize and to guide the searching procedure and the cutting thresholds selection. To deal with the large quantity of local clusters, an extra step is implemented to reduce the number of results to the minimum.


Ridge regression with adaptive additive rectangles and other piecewise functional templates

arXiv.org Machine Learning

We propose an $L_{2}$-based penalization algorithm for functional linear regression models, where the coefficient function is shrunk towards a data-driven shape template $\gamma$, which is constrained to belong to a class of piecewise functions by restricting its basis expansion. In particular, we focus on the case where $\gamma$ can be expressed as a sum of $q$ rectangles that are adaptively positioned with respect to the regression error. As the problem of finding the optimal knot placement of a piecewise function is nonconvex, the proposed parametrization allows to reduce the number of variables in the global optimization scheme, resulting in a fitting algorithm that alternates between approximating a suitable template and solving a convex ridge-like problem. The predictive power and interpretability of our method is shown on multiple simulations and two real world case studies.


Measure Inducing Classification and Regression Trees for Functional Data

arXiv.org Machine Learning

We propose a tree-based algorithm for classification and regression problems in the context of functional data analysis, which allows to leverage representation learning and multiple splitting rules at the node level, reducing generalization error while retaining the interpretability of a tree. This is achieved by learning a weighted functional $L^{2}$ space by means of constrained convex optimization, which is then used to extract multiple weighted integral features from the input functions, in order to determine the binary split for each internal node of the tree. The approach is designed to manage multiple functional inputs and/or outputs, by defining suitable splitting rules and loss functions that can depend on the specific problem and can also be combined with scalar and categorical data, as the tree is grown with the original greedy CART algorithm. We focus on the case of scalar-valued functional inputs defined on unidimensional domains and illustrate the effectiveness of our method in both classification and regression tasks, through a simulation study and four real world applications.


Conformal Prediction: a Unified Review of Theory and New Challenges

arXiv.org Machine Learning

In this work we provide a review of basic ideas and novel developments about Conformal Prediction -- an innovative distribution-free, non-parametric forecasting method, based on minimal assumptions -- that is able to yield in a very straightforward way predictions sets that are valid in a statistical sense also in in the finite sample case. The in-depth discussion provided in the paper covers the theoretical underpinnings of Conformal Prediction, and then proceeds to list the more advanced developments and adaptations of the original idea.