Goto

Collaborating Authors

 Van Nguyen, Thai


Fighting Game Adaptive Background Music for Improved Gameplay

arXiv.org Artificial Intelligence

This paper presents our work to enhance the background music (BGM) in DareFightingICE by adding adaptive features. The adaptive BGM consists of three different categories of instruments playing the BGM of the winner sound design from the 2022 DareFightingICE Competition. The BGM adapts by changing the volume of each category of instruments. Each category is connected to a different element of the game. We then run experiments to evaluate the adaptive BGM by using a deep reinforcement learning AI agent that only uses audio as input (Blind DL AI). The results show that the performance of the Blind DL AI improves while playing with the adaptive BGM as compared to playing without the adaptive BGM.


Achieving Fairness in DareFightingICE Agents Evaluation Through a Delay Mechanism

arXiv.org Artificial Intelligence

This paper proposes a delay mechanism to mitigate the impact of latency differences in the gRPC framework--a high-performance, open-source universal remote procedure call (RPC) framework--between different programming languages on the performance of agents in DareFightingICE, a fighting game research platform. The study finds that gRPC latency differences between Java and Python can significantly impact real-time decision-making. Without a delay mechanism, Java-based agents outperform Python-based ones due to lower gRPC latency on the Java platform. However, with the proposed delay mechanism, both Java-based and Python-based agents exhibit similar performance, leading to a fair comparison between agents developed using different programming languages. Thus, this work underscores the crucial importance of considering gRPC latency when developing and evaluating agents in DareFightingICE, and the insights gained could potentially extend to other gRPC-based applications.


Adaptive Background Music for a Fighting Game: A Multi-Instrument Volume Modulation Approach

arXiv.org Artificial Intelligence

This paper presents our work to enhance the background music (BGM) in DareFightingICE by adding an adaptive BGM. The adaptive BGM consists of five different instruments playing a classical music piece called "Air on G-String." The BGM adapts by changing the volume of the instruments. Each instrument is connected to a different element of the game. We then run experiments to evaluate the adaptive BGM by using a deep reinforcement learning AI that only uses audio as input (Blind DL AI). The results show that the performance of the Blind DL AI improves while playing with the adaptive BGM as compared to playing without the adaptive BGM.


Improving Data Transfer Efficiency for AIs in the DareFightingICE using gRPC

arXiv.org Artificial Intelligence

This paper presents a new communication interface for the DareFightingICE platform, a Java-based fighting game focused on implementing AI for controlling a non-player character. The interface uses an open-source remote procedure call, gRPC to improve the efficiency of data transfer between the game and the AI, reducing the time spent on receiving information from the game server. This is important because the main challenge of implementing AI in a fighting game is the need for the AI to select an action to perform within a short response time. The DareFightingICE platform has been integrated with Py4J, allowing developers to create AIs using Python. However, Py4J is less efficient at handling large amounts of data, resulting in excessive latency. In contrast, gRPC is well-suited for transmitting large amounts of data. To evaluate the effectiveness of the new communication interface, we conducted an experiment comparing the latency of gRPC and Py4J, using a rule-based AI that sends a kick command regardless of the information received from the game server. The experiment results showed not only a 65\% reduction in latency but also improved stability and eliminated missed frames compared to the current interface.


Adaptive neural network based dynamic surface control for uncertain dual arm robots

arXiv.org Artificial Intelligence

For instance, dual arm manipulators have been effectively employed in a diversity of tasks including assembling a car, grasping and transporting an object or nursing the elderly [7]. In those scenarios, the DAR have been expected to behave like a human, which is they should be able to manipulate an object similarly to what a person does [3]. As compared to a single arm robot, the DAR have significant advantages such as more flexible movements, higher precision and greater dexterity for handling large objects [8, 9]. Nevertheless, since the kinematic and dynamic models of the DAR system are much more complicated than those of a single arm robot, it has more challenges to effectively and efficiently control the DAR, where synchronously coordinating the robot arms are highly expected. In order to accurately and stabily track the robot arms along desired trajectories, a number of the control strategies have been proposed. For instance, the traditional methods such as nonlinear feedback control [10] or hybrid force/position control relied on the kinematics and statics [11, 12] have been proposed to simultaneously control both of the arms. In the works [13, 14, 15], the authors have proposed to utilize the impedance control by considering the dynamic interaction between the robot and its surrounding environment while guaranteeing the desired movements. More importantly, robustness of the control performance is also highly prioritized in consideration of designing a controller for a highly uncertain and nonlinear DAR system. In literature of the modern control theory, sliding mode control (SMC) demonstrates a diverse ability to robustly control any system.