Van Leemput, Koen
A Constrast-Agnostic Method for Ultra-High Resolution Claustrum Segmentation
Mauri, Chiara, Fritz, Ryan, Mora, Jocelyn, Billot, Benjamin, Iglesias, Juan Eugenio, Van Leemput, Koen, Augustinack, Jean, Greve, Douglas N
The claustrum is a band-like gray matter structure located between putamen and insula whose exact functions are still actively researched. Its sheet-like structure makes it barely visible in in vivo Magnetic Resonance Imaging (MRI) scans at typical resolutions and neuroimaging tools for its study, including methods for automatic segmentation, are currently very limited. In this paper, we propose a contrast- and resolution-agnostic method for claustrum segmentation at ultra-high resolution (0.35 mm isotropic); the method is based on the SynthSeg segmentation framework (Billot et al., 2023), which leverages the use of synthetic training intensity images to achieve excellent generalization. In particular, SynthSeg requires only label maps to be trained, since corresponding intensity images are synthesized on the fly with random contrast and resolution. We trained a deep learning network for automatic claustrum segmentation, using claustrum manual labels obtained from 18 ultra-high resolution MRI scans (mostly ex vivo). We demonstrated the method to work on these 18 high resolution cases (Dice score = 0.632, mean surface distance = 0.458 mm, and volumetric similarity = 0.867 using 6-fold Cross Validation (CV)), and also on in vivo T1-weighted MRI scans at typical resolutions (~1 mm isotropic). We also demonstrated that the method is robust in a test-retest setting and when applied to multimodal imaging (T2-weighted, Proton Density and quantitative T1 scans). To the best of our knowledge this is the first accurate method for automatic ultra-high resolution claustrum segmentation, which is robust against changes in contrast and resolution. The method is released at https://github.com/chiara-mauri/claustrum_segmentation and as part of the neuroimaging package Freesurfer (Fischl, 2012).
Hierarchical uncertainty estimation for learning-based registration in neuroimaging
Hu, Xiaoling, Gopinath, Karthik, Liu, Peirong, Hoffmann, Malte, Van Leemput, Koen, Puonti, Oula, Iglesias, Juan Eugenio
Over recent years, deep learning based image registration has achieved impressive accuracy in many domains, including medical imaging and, specifically, human neuroimaging with magnetic resonance imaging (MRI). However, the uncertainty estimation associated with these methods has been largely limited to the application of generic techniques (e.g., Monte Carlo dropout) that do not exploit the peculiarities of the problem domain, particularly spatial modeling. Here, we propose a principled way to propagate uncertainties (epistemic or aleatoric) estimated at the level of spatial location by these methods, to the level of global transformation models, and further to downstream tasks. Specifically, we justify the choice of a Gaussian distribution for the local uncertainty modeling, and then propose a framework where uncertainties spread across hierarchical levels, depending on the choice of transformation model. Experiments on publicly available data sets show that Monte Carlo dropout correlates very poorly with the reference registration error, whereas our uncertainty estimates correlate much better. % with the reference registration error. Crucially, the results also show that uncertainty-aware fitting of transformations improves the registration accuracy of brain MRI scans. Finally, we illustrate how sampling from the posterior distribution of the transformations can be used to propagate uncertainties to downstream neuroimaging tasks. Code is available at: https://github.com/HuXiaoling/Regre4Regis.
Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge
LaBella, Dominic, Baid, Ujjwal, Khanna, Omaditya, McBurney-Lin, Shan, McLean, Ryan, Nedelec, Pierre, Rashid, Arif, Tahon, Nourel Hoda, Altes, Talissa, Bhalerao, Radhika, Dhemesh, Yaseen, Godfrey, Devon, Hilal, Fathi, Floyd, Scott, Janas, Anastasia, Kazerooni, Anahita Fathi, Kirkpatrick, John, Kent, Collin, Kofler, Florian, Leu, Kevin, Maleki, Nazanin, Menze, Bjoern, Pajot, Maxence, Reitman, Zachary J., Rudie, Jeffrey D., Saluja, Rachit, Velichko, Yury, Wang, Chunhao, Warman, Pranav, Adewole, Maruf, Albrecht, Jake, Anazodo, Udunna, Anwar, Syed Muhammad, Bergquist, Timothy, Chen, Sully Francis, Chung, Verena, Conte, Gian-Marco, Dako, Farouk, Eddy, James, Ezhov, Ivan, Khalili, Nastaran, Iglesias, Juan Eugenio, Jiang, Zhifan, Johanson, Elaine, Van Leemput, Koen, Li, Hongwei Bran, Linguraru, Marius George, Liu, Xinyang, Mahtabfar, Aria, Meier, Zeke, Moawad, Ahmed W., Mongan, John, Piraud, Marie, Shinohara, Russell Takeshi, Wiggins, Walter F., Abayazeed, Aly H., Akinola, Rachel, Jakab, András, Bilello, Michel, de Verdier, Maria Correia, Crivellaro, Priscila, Davatzikos, Christos, Farahani, Keyvan, Freymann, John, Hess, Christopher, Huang, Raymond, Lohmann, Philipp, Moassefi, Mana, Pease, Matthew W., Vollmuth, Phillipp, Sollmann, Nico, Diffley, David, Nandolia, Khanak K., Warren, Daniel I., Hussain, Ali, Fehringer, Pascal, Bronstein, Yulia, Deptula, Lisa, Stein, Evan G., Taherzadeh, Mahsa, de Oliveira, Eduardo Portela, Haughey, Aoife, Kontzialis, Marinos, Saba, Luca, Turner, Benjamin, Brüßeler, Melanie M. T., Ansari, Shehbaz, Gkampenis, Athanasios, Weiss, David Maximilian, Mansour, Aya, Shawali, Islam H., Yordanov, Nikolay, Stein, Joel M., Hourani, Roula, Moshebah, Mohammed Yahya, Abouelatta, Ahmed Magdy, Rizvi, Tanvir, Willms, Klara, Martin, Dann C., Okar, Abdullah, D'Anna, Gennaro, Taha, Ahmed, Sharifi, Yasaman, Faghani, Shahriar, Kite, Dominic, Pinho, Marco, Haider, Muhammad Ammar, Aristizabal, Alejandro, Karargyris, Alexandros, Kassem, Hasan, Pati, Sarthak, Sheller, Micah, Alonso-Basanta, Michelle, Villanueva-Meyer, Javier, Rauschecker, Andreas M., Nada, Ayman, Aboian, Mariam, Flanders, Adam E., Wiestler, Benedikt, Bakas, Spyridon, Calabrese, Evan
We describe the design and results from the BraTS 2023 Intracranial Meningioma Segmentation Challenge. The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas, which are typically benign extra-axial tumors with diverse radiologic and anatomical presentation and a propensity for multiplicity. Nine participating teams each developed deep-learning automated segmentation models using image data from the largest multi-institutional systematically expert annotated multilabel multi-sequence meningioma MRI dataset to date, which included 1000 training set cases, 141 validation set cases, and 283 hidden test set cases. Each case included T2, T2/FLAIR, T1, and T1Gd brain MRI sequences with associated tumor compartment labels delineating enhancing tumor, non-enhancing tumor, and surrounding non-enhancing T2/FLAIR hyperintensity. Participant automated segmentation models were evaluated and ranked based on a scoring system evaluating lesion-wise metrics including dice similarity coefficient (DSC) and 95% Hausdorff Distance. The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor, respectively and a corresponding average DSC of 0.899, 0.904, and 0.871, respectively. These results serve as state-of-the-art benchmarks for future pre-operative meningioma automated segmentation algorithms. Additionally, we found that 1286 of 1424 cases (90.3%) had at least 1 compartment voxel abutting the edge of the skull-stripped image edge, which requires further investigation into optimal pre-processing face anonymization steps.
The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)
Kazerooni, Anahita Fathi, Khalili, Nastaran, Liu, Xinyang, Haldar, Debanjan, Jiang, Zhifan, Anwar, Syed Muhammed, Albrecht, Jake, Adewole, Maruf, Anazodo, Udunna, Anderson, Hannah, Bagheri, Sina, Baid, Ujjwal, Bergquist, Timothy, Borja, Austin J., Calabrese, Evan, Chung, Verena, Conte, Gian-Marco, Dako, Farouk, Eddy, James, Ezhov, Ivan, Familiar, Ariana, Farahani, Keyvan, Haldar, Shuvanjan, Iglesias, Juan Eugenio, Janas, Anastasia, Johansen, Elaine, Jones, Blaise V, Kofler, Florian, LaBella, Dominic, Lai, Hollie Anne, Van Leemput, Koen, Li, Hongwei Bran, Maleki, Nazanin, McAllister, Aaron S, Meier, Zeke, Menze, Bjoern, Moawad, Ahmed W, Nandolia, Khanak K, Pavaine, Julija, Piraud, Marie, Poussaint, Tina, Prabhu, Sanjay P, Reitman, Zachary, Rodriguez, Andres, Rudie, Jeffrey D, Shaikh, Ibraheem Salman, Shah, Lubdha M., Sheth, Nakul, Shinohara, Russel Taki, Tu, Wenxin, Viswanathan, Karthik, Wang, Chunhao, Ware, Jeffrey B, Wiestler, Benedikt, Wiggins, Walter, Zapaishchykova, Anna, Aboian, Mariam, Bornhorst, Miriam, de Blank, Peter, Deutsch, Michelle, Fouladi, Maryam, Hoffman, Lindsey, Kann, Benjamin, Lazow, Margot, Mikael, Leonie, Nabavizadeh, Ali, Packer, Roger, Resnick, Adam, Rood, Brian, Vossough, Arastoo, Bakas, Spyridon, Linguraru, Marius George
Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20\%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.
The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting
Kofler, Florian, Meissen, Felix, Steinbauer, Felix, Graf, Robert, Oswald, Eva, de da Rosa, Ezequiel, Li, Hongwei Bran, Baid, Ujjwal, Hoelzl, Florian, Turgut, Oezguen, Horvath, Izabela, Waldmannstetter, Diana, Bukas, Christina, Adewole, Maruf, Anwar, Syed Muhammad, Janas, Anastasia, Kazerooni, Anahita Fathi, LaBella, Dominic, Moawad, Ahmed W, Farahani, Keyvan, Eddy, James, Bergquist, Timothy, Chung, Verena, Shinohara, Russell Takeshi, Dako, Farouk, Wiggins, Walter, Reitman, Zachary, Wang, Chunhao, Liu, Xinyang, Jiang, Zhifan, Familiar, Ariana, Conte, Gian-Marco, Johanson, Elaine, Meier, Zeke, Davatzikos, Christos, Freymann, John, Kirby, Justin, Bilello, Michel, Fathallah-Shaykh, Hassan M, Wiest, Roland, Kirschke, Jan, Colen, Rivka R, Kotrotsou, Aikaterini, Lamontagne, Pamela, Marcus, Daniel, Milchenko, Mikhail, Nazeri, Arash, Weber, Marc-André, Mahajan, Abhishek, Mohan, Suyash, Mongan, John, Hess, Christopher, Cha, Soonmee, Villanueva-Meyer, Javier, Colak, Errol, Crivellaro, Priscila, Jakab, Andras, Albrecht, Jake, Anazodo, Udunna, Aboian, Mariam, Iglesias, Juan Eugenio, Van Leemput, Koen, Bakas, Spyridon, Rueckert, Daniel, Wiestler, Benedikt, Ezhov, Ivan, Piraud, Marie, Menze, Bjoern
A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with a scan that is already pathological. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantees for images featuring lesions. Examples include but are not limited to algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction. To solve this dilemma, we introduce the BraTS 2023 inpainting challenge. Here, the participants' task is to explore inpainting techniques to synthesize healthy brain scans from lesioned ones. The following manuscript contains the task formulation, dataset, and submission procedure. Later it will be updated to summarize the findings of the challenge. The challenge is organized as part of the BraTS 2023 challenge hosted at the MICCAI 2023 conference in Vancouver, Canada.
A Lightweight Causal Model for Interpretable Subject-level Prediction
Mauri, Chiara, Cerri, Stefano, Puonti, Oula, Mühlau, Mark, Van Leemput, Koen
Recent years have seen a growing interest in methods for predicting a variable of interest, such as a subject's diagnosis, from medical images. Methods based on discriminative modeling excel at making accurate predictions, but are challenged in their ability to explain their decisions in anatomically meaningful terms. In this paper, we propose a simple technique for single-subject prediction that is inherently interpretable. It augments the generative models used in classical human brain mapping techniques, in which cause-effect relations can be encoded, with a multivariate noise model that captures dominant spatial correlations. Experiments demonstrate that the resulting model can be efficiently inverted to make accurate subject-level predictions, while at the same time offering intuitive causal explanations of its inner workings. The method is easy to use: training is fast for typical training set sizes, and only a single hyperparameter needs to be set by the user. Our code is available at https://github.com/chiara-mauri/Interpretable-subject-level-prediction.
The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma
LaBella, Dominic, Adewole, Maruf, Alonso-Basanta, Michelle, Altes, Talissa, Anwar, Syed Muhammad, Baid, Ujjwal, Bergquist, Timothy, Bhalerao, Radhika, Chen, Sully, Chung, Verena, Conte, Gian-Marco, Dako, Farouk, Eddy, James, Ezhov, Ivan, Godfrey, Devon, Hilal, Fathi, Familiar, Ariana, Farahani, Keyvan, Iglesias, Juan Eugenio, Jiang, Zhifan, Johanson, Elaine, Kazerooni, Anahita Fathi, Kent, Collin, Kirkpatrick, John, Kofler, Florian, Van Leemput, Koen, Li, Hongwei Bran, Liu, Xinyang, Mahtabfar, Aria, McBurney-Lin, Shan, McLean, Ryan, Meier, Zeke, Moawad, Ahmed W, Mongan, John, Nedelec, Pierre, Pajot, Maxence, Piraud, Marie, Rashid, Arif, Reitman, Zachary, Shinohara, Russell Takeshi, Velichko, Yury, Wang, Chunhao, Warman, Pranav, Wiggins, Walter, Aboian, Mariam, Albrecht, Jake, Anazodo, Udunna, Bakas, Spyridon, Flanders, Adam, Janas, Anastasia, Khanna, Goldey, Linguraru, Marius George, Menze, Bjoern, Nada, Ayman, Rauschecker, Andreas M, Rudie, Jeff, Tahon, Nourel Hoda, Villanueva-Meyer, Javier, Wiestler, Benedikt, Calabrese, Evan
Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.
A Modality-Adaptive Method for Segmenting Brain Tumors and Organs-at-Risk in Radiation Therapy Planning
Agn, Mikael, Rosenschöld, Per Munck af, Puonti, Oula, Lundemann, Michael J., Mancini, Laura, Papadaki, Anastasia, Thust, Steffi, Ashburner, John, Law, Ian, Van Leemput, Koen
In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.