Goto

Collaborating Authors

 Valera, Isabel


Distilling Information Reliability and Source Trustworthiness from Digital Traces

arXiv.org Machine Learning

Online knowledge repositories typically rely on their users or dedicated editors to evaluate the reliability of their content. These evaluations can be viewed as noisy measurements of both information reliability and information source trustworthiness. Can we leverage these noisy evaluations, often biased, to distill a robust, unbiased and interpretable measure of both notions? In this paper, we argue that the temporal traces left by these noisy evaluations give cues on the reliability of the information and the trustworthiness of the sources. Then, we propose a temporal point process modeling framework that links these temporal traces to robust, unbiased and interpretable notions of information reliability and source trustworthiness. Furthermore, we develop an efficient convex optimization procedure to learn the parameters of the model from historical traces. Experiments on real-world data gathered from Wikipedia and Stack Overflow show that our modeling framework accurately predicts evaluation events, provides an interpretable measure of information reliability and source trustworthiness, and yields interesting insights about real-world events.


Fairness Constraints: Mechanisms for Fair Classification

arXiv.org Machine Learning

Algorithmic decision making systems are ubiquitous across a wide variety of online as well as offline services. These systems rely on complex learning methods and vast amounts of data to optimize the service functionality, satisfaction of the end user and profitability. However, there is a growing concern that these automated decisions can lead, even in the absence of intent, to a lack of fairness, i.e., their outcomes can disproportionately hurt (or, benefit) particular groups of people sharing one or more sensitive attributes (e.g., race, sex). In this paper, we introduce a flexible mechanism to design fair classifiers by leveraging a novel intuitive measure of decision boundary (un)fairness. We instantiate this mechanism with two well-known classifiers, logistic regression and support vector machines, and show on real-world data that our mechanism allows for a fine-grained control on the degree of fairness, often at a small cost in terms of accuracy.


Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment

arXiv.org Machine Learning

Automated data-driven decision making systems are increasingly being used to assist, or even replace humans in many settings. These systems function by learning from historical decisions, often taken by humans. In order to maximize the utility of these systems (or, classifiers), their training involves minimizing the errors (or, misclassifications) over the given historical data. However, it is quite possible that the optimally trained classifier makes decisions for people belonging to different social groups with different misclassification rates (e.g., misclassification rates for females are higher than for males), thereby placing these groups at an unfair disadvantage. To account for and avoid such unfairness, in this paper, we introduce a new notion of unfairness, disparate mistreatment, which is defined in terms of misclassification rates. We then propose intuitive measures of disparate mistreatment for decision boundary-based classifiers, which can be easily incorporated into their formulation as convex-concave constraints. Experiments on synthetic as well as real world datasets show that our methodology is effective at avoiding disparate mistreatment, often at a small cost in terms of accuracy.


Learning and Forecasting Opinion Dynamics in Social Networks

Neural Information Processing Systems

Social media and social networking sites have become a global pinboard for exposition and discussion of news, topics, and ideas, where social media users often update their opinions about a particular topic by learning from the opinions shared by their friends. In this context, can we learn a data-driven model of opinion dynamics that is able to accurately forecast users' opinions? In this paper, we introduce SLANT, a probabilistic modeling framework of opinion dynamics, which represents users' opinions over time by means of marked jump diffusion stochastic differential equations, and allows for efficient model simulation and parameter estimation from historical fine grained event data. We then leverage our framework to derive a set of efficient predictive formulas for opinion forecasting and identify conditions under which opinions converge to a steady state. Experiments on data gathered from Twitter show that our model provides a good fit to the data and our formulas achieve more accurate forecasting than alternatives.


Uncovering the Dynamics of Crowdlearning and the Value of Knowledge

arXiv.org Machine Learning

Learning from the crowd has become increasingly popular in the Web and social media. There is a wide variety of crowdlearning sites in which, on the one hand, users learn from the knowledge that other users contribute to the site, and, on the other hand, knowledge is reviewed and curated by the same users using assessment measures such as upvotes or likes. In this paper, we present a probabilistic modeling framework of crowdlearning, which uncovers the evolution of a user's expertise over time by leveraging other users' assessments of her contributions. The model allows for both off-site and on-site learning and captures forgetting of knowledge. We then develop a scalable estimation method to fit the model parameters from millions of recorded learning and contributing events. We show the effectiveness of our model by tracing activity of ~25 thousand users in Stack Overflow over a 4.5 year period. We find that answers with high knowledge value are rare. Newbies and experts tend to acquire less knowledge than users in the middle range. Prolific learners tend to be also proficient contributors that post answers with high knowledge value.


Modeling the Dynamics of Online Learning Activity

arXiv.org Machine Learning

People are increasingly relying on the Web and social media to find solutions to their problems in a wide range of domains. In this online setting, closely related problems often lead to the same characteristic learning pattern, in which people sharing these problems visit related pieces of information, perform almost identical queries or, more generally, take a series of similar actions. In this paper, we introduce a novel modeling framework for clustering continuous-time grouped streaming data, the hierarchical Dirichlet Hawkes process (HDHP), which allows us to automatically uncover a wide variety of learning patterns from detailed traces of learning activity. Our model allows for efficient inference, scaling to millions of actions taken by thousands of users. Experiments on real data gathered from Stack Overflow reveal that our framework can recover meaningful learning patterns in terms of both content and temporal dynamics, as well as accurately track users' interests and goals over time.


Infinite Factorial Dynamical Model

Neural Information Processing Systems

We propose the infinite factorial dynamic model (iFDM), a general Bayesian nonparametric model for source separation. Our model builds on the Markov Indian buffet process to consider a potentially unbounded number of hidden Markov chains (sources) that evolve independently according to some dynamics, in which the state space can be either discrete or continuous. For posterior inference, we develop an algorithm based on particle Gibbs with ancestor sampling that can be efficiently applied to a wide range of source separation problems. We evaluate the performance of our iFDM on four well-known applications: multitarget tracking, cocktail party, power disaggregation, and multiuser detection. Our experimental results show that our approach for source separation does not only outperform previous approaches, but it can also handle problems that were computationally intractable for existing approaches.


Shaping Social Activity by Incentivizing Users

Neural Information Processing Systems

Events in an online social network can be categorized roughly into endogenous events, where users just respond to the actions of their neighbors within the network, or exogenous events, where users take actions due to drives external to the network. How much external drive should be provided to each user, such that the network activity can be steered towards a target state? In this paper, we model social events using multivariate Hawkes processes, which can capture both endogenous and exogenous event intensities, and derive a time dependent linear relation between the intensity of exogenous events and the overall network activity. Exploiting this connection, we develop a convex optimization framework for determining the required level of external drive in order for the network to reach a desired activity level. We experimented with event data gathered from Twitter, and show that our method can steer the activity of the network more accurately than alternatives.


General Table Completion using a Bayesian Nonparametric Model

Neural Information Processing Systems

Even though heterogeneous databases can be found in a broad variety of applications, there exists a lack of tools for estimating missing data in such databases. In this paper, we provide an efficient and robust table completion tool, based on a Bayesian nonparametric latent feature model. In particular, we propose a general observation model for the Indian buffet process (IBP) adapted to mixed continuous (real-valued and positive real-valued) and discrete (categorical, ordinal and count) observations. Then, we propose an inference algorithm that scales linearly with the number of observations. Finally, our experiments over five real databases show that the proposed approach provides more robust and accurate estimates than the standard IBP and the Bayesian probabilistic matrix factorization with Gaussian observations.


Bayesian nonparametric comorbidity analysis of psychiatric disorders

arXiv.org Machine Learning

The analysis of comorbidity is an open and complex research field in the branch of psychiatry, where clinical experience and several studies suggest that the relation among the psychiatric disorders may have etiological and treatment implications. In this paper, we are interested in applying latent feature modeling to find the latent structure behind the psychiatric disorders that can help to examine and explain the relationships among them. To this end, we use the large amount of information collected in the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) database and propose to model these data using a nonparametric latent model based on the Indian Buffet Process (IBP). Due to the discrete nature of the data, we first need to adapt the observation model for discrete random variables. We propose a generative model in which the observations are drawn from a multinomial-logit distribution given the IBP matrix. The implementation of an efficient Gibbs sampler is accomplished using the Laplace approximation, which allows integrating out the weighting factors of the multinomial-logit likelihood model. We also provide a variational inference algorithm for this model, which provides a complementary (and less expensive in terms of computational complexity) alternative to the Gibbs sampler allowing us to deal with a larger number of data. Finally, we use the model to analyze comorbidity among the psychiatric disorders diagnosed by experts from the NESARC database.