Not enough data to create a plot.
Try a different view from the menu above.
Valada, Abhinav
Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations
Kurenkov, Michael, Marvi, Sajad, Schmidt, Julian, Rist, Christoph B., Canevaro, Alessandro, Yu, Hang, Jordan, Julian, Schildbach, Georg, Valada, Abhinav
In recent years, autonomous vehicles (AVs) have gained significant attention due to their potential to reduce traffic fatalities. The widespread adoption of AV technology is contingent not only on technical performance but also on public trust, with concerns centering on safety and potential technological malfunctions [1, 2]. A key factor in improving trust in autonomous systems is the ability to understand and replicate human driving behavior. However, worldwide, road accidents cause over 1.19 million deaths annually, with a majority resulting from human error [3], hence following human driving pattern is not always desired. Since the majority of accidents are caused by human error, analyzing human driving data allows us to identify common mistakes and undesirable driving patterns. This understanding is crucial for training machine learning models, such as those used in behavior cloning, where the goal is to mimic human driving behavior. Identifying undesirable driving patterns is especially useful for achieving a defensive driving behavior, which is proven to play a significant role in increasing passenger comfort and trust in AVs [4].
Neural Fields in Robotics: A Survey
Irshad, Muhammad Zubair, Comi, Mauro, Lin, Yen-Chen, Heppert, Nick, Valada, Abhinav, Ambrus, Rares, Kira, Zsolt, Tremblay, Jonathan
Neural Fields have emerged as a transformative approach for 3D scene representation in computer vision and robotics, enabling accurate inference of geometry, 3D semantics, and dynamics from posed 2D data. Leveraging differentiable rendering, Neural Fields encompass both continuous implicit and explicit neural representations enabling high-fidelity 3D reconstruction, integration of multi-modal sensor data, and generation of novel viewpoints. This survey explores their applications in robotics, emphasizing their potential to enhance perception, planning, and control. Their compactness, memory efficiency, and differentiability, along with seamless integration with foundation and generative models, make them ideal for real-time applications, improving robot adaptability and decision-making. This paper provides a thorough review of Neural Fields in robotics, categorizing applications across various domains and evaluating their strengths and limitations, based on over 200 papers. First, we present four key Neural Fields frameworks: Occupancy Networks, Signed Distance Fields, Neural Radiance Fields, and Gaussian Splatting. Second, we detail Neural Fields' applications in five major robotics domains: pose estimation, manipulation, navigation, physics, and autonomous driving, highlighting key works and discussing takeaways and open challenges. Finally, we outline the current limitations of Neural Fields in robotics and propose promising directions for future research. Project page: https://robonerf.github.io
Entropy-Based Uncertainty Modeling for Trajectory Prediction in Autonomous Driving
Distelzweig, Aron, Look, Andreas, Kosman, Eitan, Janjoš, Faris, Wagner, Jörg, Valada, Abhinav
In autonomous driving, accurate motion prediction is essential for safe and efficient motion planning. To ensure safety, planners must rely on reliable uncertainty information about the predicted future behavior of surrounding agents, yet this aspect has received limited attention. This paper addresses the so-far neglected problem of uncertainty modeling in trajectory prediction. We adopt a holistic approach that focuses on uncertainty quantification, decomposition, and the influence of model composition. Our method is based on a theoretically grounded information-theoretic approach to measure uncertainty, allowing us to decompose total uncertainty into its aleatoric and epistemic components. We conduct extensive experiments on the nuScenes dataset to assess how different model architectures and configurations affect uncertainty quantification and model robustness.
Zero-Cost Whole-Body Teleoperation for Mobile Manipulation
Honerkamp, Daniel, Mahesheka, Harsh, von Hartz, Jan Ole, Welschehold, Tim, Valada, Abhinav
Demonstration data plays a key role in learning complex behaviors and training robotic foundation models. While effective control interfaces exist for static manipulators, data collection remains cumbersome and time intensive for mobile manipulators due to their large number of degrees of freedom. While specialized hardware, avatars, or motion tracking can enable whole-body control, these approaches are either expensive, robot-specific, or suffer from the embodiment mismatch between robot and human demonstrator. In this work, we present MoMa-Teleop, a novel teleoperation method that delegates the base motions to a reinforcement learning agent, leaving the operator to focus fully on the task-relevant end-effector motions. This enables whole-body teleoperation of mobile manipulators with zero additional hardware or setup costs via standard interfaces such as joysticks or hand guidance. Moreover, the operator is not bound to a tracked workspace and can move freely with the robot over spatially extended tasks. We demonstrate that our approach results in a significant reduction in task completion time across a variety of robots and tasks. As the generated data covers diverse whole-body motions without embodiment mismatch, it enables efficient imitation learning. By focusing on task-specific end-effector motions, our approach learns skills that transfer to unseen settings, such as new obstacles or changed object positions, from as little as five demonstrations. We make code and videos available at http://moma-teleop.cs.uni-freiburg.de.
Motion Forecasting via Model-Based Risk Minimization
Distelzweig, Aron, Kosman, Eitan, Look, Andreas, Janjoš, Faris, Manivannan, Denesh K., Valada, Abhinav
Forecasting the future trajectories of surrounding agents is crucial for autonomous vehicles to ensure safe, efficient, and comfortable route planning. While model ensembling has improved prediction accuracy in various fields, its application in trajectory prediction is limited due to the multi-modal nature of predictions. In this paper, we propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models. We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models. To address this problem, we introduce a new method that generates optimal trajectories from a set of neural networks, framing it as a risk minimization problem with a variable loss function. By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling. Extensive experiments on the nuScenes prediction dataset demonstrate that our method surpasses current state-of-the-art techniques, achieving top ranks on the leaderboard. We also provide a comprehensive empirical study on ensembling strategies, offering insights into their effectiveness. Our findings highlight the potential of advanced ensembling techniques in trajectory prediction, significantly improving predictive performance and paving the way for more reliable predicted trajectories.
The Art of Imitation: Learning Long-Horizon Manipulation Tasks from Few Demonstrations
von Hartz, Jan Ole, Welschehold, Tim, Valada, Abhinav, Boedecker, Joschka
Task Parametrized Gaussian Mixture Models (TP-GMM) are a sample-efficient method for learning object-centric robot manipulation tasks. However, there are several open challenges to applying TP-GMMs in the wild. In this work, we tackle three crucial challenges synergistically. First, end-effector velocities are non-Euclidean and thus hard to model using standard GMMs. We thus propose to factorize the robot's end-effector velocity into its direction and magnitude, and model them using Riemannian GMMs. Second, we leverage the factorized velocities to segment and sequence skills from complex demonstration trajectories. Through the segmentation, we further align skill trajectories and hence leverage time as a powerful inductive bias. Third, we present a method to automatically detect relevant task parameters per skill from visual observations. Our approach enables learning complex manipulation tasks from just five demonstrations while using only RGB-D observations. Extensive experimental evaluations on RLBench demonstrate that our approach achieves state-of-the-art performance with 20-fold improved sample efficiency. Our policies generalize across different environments, object instances, and object positions, while the learned skills are reusable.
Learning Lane Graphs from Aerial Imagery Using Transformers
Büchner, Martin, Dorer, Simon, Valada, Abhinav
The robust and safe operation of automated vehicles underscores the critical need for detailed and accurate topological maps. At the heart of this requirement is the construction of lane graphs, which provide essential information on lane connectivity, vital for navigating complex urban environments autonomously. While transformer-based models have been effective in creating map topologies from vehicle-mounted sensor data, their potential for generating such graphs from aerial imagery remains untapped. This work introduces a novel approach to generating successor lane graphs from aerial imagery, utilizing the advanced capabilities of transformer models. We frame successor lane graphs as a collection of maximal length paths and predict them using a Detection Transformer (DETR) architecture. We demonstrate the efficacy of our method through extensive experiments on the diverse and large-scale UrbanLaneGraph dataset, illustrating its accuracy in generating successor lane graphs and highlighting its potential for enhancing autonomous vehicle navigation in complex environments.
Language-Grounded Dynamic Scene Graphs for Interactive Object Search with Mobile Manipulation
Honerkamp, Daniel, Büchner, Martin, Despinoy, Fabien, Welschehold, Tim, Valada, Abhinav
To fully leverage the capabilities of mobile manipulation robots, it is imperative that they are able to autonomously execute long-horizon tasks in large unexplored environments. While large language models (LLMs) have shown emergent reasoning skills on arbitrary tasks, existing work primarily concentrates on explored environments, typically focusing on either navigation or manipulation tasks in isolation. In this work, we propose MoMa-LLM, a novel approach that grounds language models within structured representations derived from open-vocabulary scene graphs, dynamically updated as the environment is explored. We tightly interleave these representations with an object-centric action space. Given object detections, the resulting approach is zero-shot, open-vocabulary, and readily extendable to a spectrum of mobile manipulation and household robotic tasks. We demonstrate the effectiveness of MoMa-LLM in a novel semantic interactive search task in large realistic indoor environments. In extensive experiments in both simulation and the real world, we show substantially improved search efficiency compared to conventional baselines and state-of-the-art approaches, as well as its applicability to more abstract tasks. We make the code publicly available at http://moma-llm.cs.uni-freiburg.de.
Hierarchical Open-Vocabulary 3D Scene Graphs for Language-Grounded Robot Navigation
Werby, Abdelrhman, Huang, Chenguang, Büchner, Martin, Valada, Abhinav, Burgard, Wolfram
Recent open-vocabulary robot mapping methods enrich dense geometric maps with pre-trained visual-language features. While these maps allow for the prediction of point-wise saliency maps when queried for a certain language concept, large-scale environments and abstract queries beyond the object level still pose a considerable hurdle, ultimately limiting language-grounded robotic navigation. In this work, we present HOV-SG, a hierarchical open-vocabulary 3D scene graph mapping approach for language-grounded robot navigation. Leveraging open-vocabulary vision foundation models, we first obtain state-of-the-art open-vocabulary segment-level maps in 3D and subsequently construct a 3D scene graph hierarchy consisting of floor, room, and object concepts, each enriched with open-vocabulary features. Our approach is able to represent multi-story buildings and allows robotic traversal of those using a cross-floor Voronoi graph. HOV-SG is evaluated on three distinct datasets and surpasses previous baselines in open-vocabulary semantic accuracy on the object, room, and floor level while producing a 75% reduction in representation size compared to dense open-vocabulary maps. In order to prove the efficacy and generalization capabilities of HOV-SG, we showcase successful long-horizon language-conditioned robot navigation within real-world multi-storage environments. We provide code and trial video data at http://hovsg.github.io/.
A Good Foundation is Worth Many Labels: Label-Efficient Panoptic Segmentation
Vödisch, Niclas, Petek, Kürsat, Käppeler, Markus, Valada, Abhinav, Burgard, Wolfram
A key challenge for the widespread application of learning-based models for robotic perception is to significantly reduce the required amount of annotated training data while achieving accurate predictions. This is essential not only to decrease operating costs but also to speed up deployment time. In this work, we address this challenge for PAnoptic SegmenTation with fEw Labels (PASTEL) by exploiting the groundwork paved by visual foundation models. We leverage descriptive image features from such a model to train two lightweight network heads for semantic segmentation and object boundary detection, using very few annotated training samples. We then merge their predictions via a novel fusion module that yields panoptic maps based on normalized cut. To further enhance the performance, we utilize self-training on unlabeled images selected by a feature-driven similarity scheme. We underline the relevance of our approach by employing PASTEL to important robot perception use cases from autonomous driving and agricultural robotics. In extensive experiments, we demonstrate that PASTEL significantly outperforms previous methods for label-efficient segmentation even when using fewer annotations. The code of our work is publicly available at http://pastel.cs.uni-freiburg.de.