Goto

Collaborating Authors

 Vahdat, Arash


Truncated Consistency Models

arXiv.org Artificial Intelligence

Consistency models have recently been introduced to accelerate sampling from diffusion models by directly predicting the solution (i.e., data) of the probability flow ODE (PF ODE) from initial noise. However, the training of consistency models requires learning to map all intermediate points along PF ODE trajectories to their corresponding endpoints. This task is much more challenging than the ultimate objective of one-step generation, which only concerns the PF ODE's noise-to-data mapping. We empirically find that this training paradigm limits the one-step generation performance of consistency models. To address this issue, we generalize consistency training to the truncated time range, which allows the model to ignore denoising tasks at earlier time steps and focus its capacity on generation. We propose a new parameterization of the consistency function and a two-stage training procedure that prevents the truncated-time training from collapsing to a trivial solution. Experiments on CIFAR-10 and ImageNet 64 64 datasets show that our method achieves better one-step and two-step FIDs than the state-of-theart consistency models such as iCT-deep, using more than 2 smaller networks. Diffusion models (Ho et al., 2020; Song et al., 2020) have demonstrated remarkable capabilities in generating high-quality continuous data such as images, videos, or audio (Ramesh et al., 2022; Ho et al., 2022; Huang et al., 2023).


Stochastic Flow Matching for Resolving Small-Scale Physics

arXiv.org Machine Learning

Conditioning diffusion and flow models have proven effective for super-resolving small-scale details in natural images. However, in physical sciences such as weather, super-resolving small-scale details poses significant challenges due to: (i) misalignment between input and output distributions (i.e., solutions to distinct partial differential equations (PDEs) follow different trajectories), (ii) multi-scale dynamics, deterministic dynamics at large scales vs. stochastic at small scales, and (iii) limited data, increasing the risk of overfitting. To address these challenges, we propose encoding the inputs to a latent base distribution that is closer to the target distribution, followed by flow matching to generate small-scale physics. The encoder captures the deterministic components, while flow matching adds stochastic small-scale details. To account for uncertainty in the deterministic part, we inject noise into the encoder's output using an adaptive noise scaling mechanism, which is dynamically adjusted based on maximum-likelihood estimates of the encoder's predictions. We conduct extensive experiments on both the realworld CWA weather dataset and the PDE-based Kolmogorov dataset, with the CWA task involving super-resolving the weather variables for the region of Taiwan from 25 km to 2 km scales. Our results show that the proposed stochastic flow matching (SFM) framework significantly outperforms existing methods such as conditional diffusion and flows. Resolving small-scale physics is crucial in many scientific applications (Wilby et al., 1998; Rampal et al., 2022; 2024). For instance, in the atmospheric sciences, accurately capturing small-scale dynamics is essential for local planning and disaster mitigation. The success of conditional diffusion models in super-resolving natural images and videos (Song et al., 2021; Batzolis et al., 2021; Hoogeboom et al., 2023) has recently been extended to super-resolving small-scale physics (Aich et al., 2024; Ling et al., 2024). However, this task faces significant challenges: (C1) Input and target data are often spatially misaligned due to differing PDE solutions operating at various resolutions, leading to divergent trajectories. Additionally, the input and target variables (channels) often represent different physical quantities, causing further misalignment. Few efforts have been made to directly address these challenges in generative learning. Prior work typically relies on residual learning approaches (Mardani et al., 2023; Zhao et al., 2021).


DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents

arXiv.org Artificial Intelligence

Diffusion models (DMs) have revolutionized generative learning. They utilize a diffusion process to encode data into a simple Gaussian distribution. However, encoding a complex, potentially multimodal data distribution into a single continuous Gaussian distribution arguably represents an unnecessarily challenging learning problem. We propose Discrete-Continuous Latent Variable Diffusion Models (DisCo-Diff) to simplify this task by introducing complementary discrete latent variables. We augment DMs with learnable discrete latents, inferred with an encoder, and train DM and encoder end-to-end. DisCo-Diff does not rely on pre-trained networks, making the framework universally applicable. The discrete latents significantly simplify learning the DM's complex noise-to-data mapping by reducing the curvature of the DM's generative ODE. An additional autoregressive transformer models the distribution of the discrete latents, a simple step because DisCo-Diff requires only few discrete variables with small codebooks. We validate DisCo-Diff on toy data, several image synthesis tasks as well as molecular docking, and find that introducing discrete latents consistently improves model performance. For example, DisCo-Diff achieves state-of-the-art FID scores on class-conditioned ImageNet-64/128 datasets with ODE sampler.


Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization

arXiv.org Artificial Intelligence

Generating ligand molecules for specific protein targets, known as structure-based drug design, is a fundamental problem in therapeutics development and biological discovery. Recently, target-aware generative models, especially diffusion models, have shown great promise in modeling protein-ligand interactions and generating candidate drugs. However, existing models primarily focus on learning the chemical distribution of all drug candidates, which lacks effective steerability on the chemical quality of model generations. In this paper, we propose a novel and general alignment framework to align pretrained target diffusion models with preferred functional properties, named AliDiff. AliDiff shifts the target-conditioned chemical distribution towards regions with higher binding affinity and structural rationality, specified by user-defined reward functions, via the preference optimization approach. To avoid the overfitting problem in common preference optimization objectives, we further develop an improved Exact Energy Preference Optimization method to yield an exact and efficient alignment of the diffusion models, and provide the closed-form expression for the converged distribution. Empirical studies on the CrossDocked2020 benchmark show that AliDiff can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score, while maintaining strong molecular properties.


DiffUHaul: A Training-Free Method for Object Dragging in Images

arXiv.org Artificial Intelligence

Text-to-image diffusion models have proven effective for solving many image editing tasks. However, the seemingly straightforward task of seamlessly relocating objects within a scene remains surprisingly challenging. Existing methods addressing this problem often struggle to function reliably in real-world scenarios due to lacking spatial reasoning. In this work, we propose a training-free method, dubbed DiffUHaul, that harnesses the spatial understanding of a localized text-to-image model, for the object dragging task. Blindly manipulating layout inputs of the localized model tends to cause low editing performance due to the intrinsic entanglement of object representation in the model. To this end, we first apply attention masking in each denoising step to make the generation more disentangled across different objects and adopt the self-attention sharing mechanism to preserve the high-level object appearance. Furthermore, we propose a new diffusion anchoring technique: in the early denoising steps, we interpolate the attention features between source and target images to smoothly fuse new layouts with the original appearance; in the later denoising steps, we pass the localized features from the source images to the interpolated images to retain fine-grained object details. To adapt DiffUHaul to real-image editing, we apply a DDPM self-attention bucketing that can better reconstruct real images with the localized model. Finally, we introduce an automated evaluation pipeline for this task and showcase the efficacy of our method. Our results are reinforced through a user preference study.


Compositional Text-to-Image Generation with Dense Blob Representations

arXiv.org Artificial Intelligence

Existing text-to-image models struggle to follow complex text prompts, raising the need for extra grounding inputs for better controllability. In this work, we propose to decompose a scene into visual primitives - denoted as dense blob representations - that contain fine-grained details of the scene while being modular, human-interpretable, and easy-to-construct. Based on blob representations, we develop a blob-grounded text-to-image diffusion model, termed BlobGEN, for compositional generation. Particularly, we introduce a new masked cross-attention module to disentangle the fusion between blob representations and visual features. To leverage the compositionality of large language models (LLMs), we introduce a new in-context learning approach to generate blob representations from text prompts. Our extensive experiments show that BlobGEN achieves superior zero-shot generation quality and better layout-guided controllability on MS-COCO. When augmented by LLMs, our method exhibits superior numerical and spatial correctness on compositional image generation benchmarks.


Residual Diffusion Modeling for Km-scale Atmospheric Downscaling

arXiv.org Artificial Intelligence

Predictions of weather hazard require expensive km-scale simulations driven by coarser global inputs. Here, a cost-effective stochastic downscaling model is trained from a high-resolution 2-km weather model over Taiwan conditioned on 25-km ERA5 reanalysis. To address the multi-scale machine learning challenges of weather data, we employ a two-step approach Corrector Diffusion (\textit{CorrDiff}), where a UNet prediction of the mean is corrected by a diffusion step. Akin to Reynolds decomposition in fluid dynamics, this isolates generative learning to the stochastic scales. \textit{CorrDiff} exhibits skillful RMSE and CRPS and faithfully recovers spectra and distributions even for extremes. Case studies of coherent weather phenomena reveal appropriate multivariate relationships reminiscent of learnt physics: the collocation of intense rainfall and sharp gradients in fronts and extreme winds and rainfall bands near the eyewall of typhoons. Downscaling global forecasts successfully retains many of these benefits, foreshadowing the potential of end-to-end, global-to-km-scales machine learning weather predictions.


DiffiT: Diffusion Vision Transformers for Image Generation

arXiv.org Artificial Intelligence

Diffusion models with their powerful expressivity and high sample quality have enabled many new applications and use-cases in various domains. For sample generation, these models rely on a denoising neural network that generates images by iterative denoising. Yet, the role of denoising network architecture is not well-studied with most efforts relying on convolutional residual U-Nets. In this paper, we study the effectiveness of vision transformers in diffusion-based generative learning. Specifically, we propose a new model, denoted as Diffusion Vision Transformers (DiffiT), which consists of a hybrid hierarchical architecture with a U-shaped encoder and decoder. We introduce a novel time-dependent self-attention module that allows attention layers to adapt their behavior at different stages of the denoising process in an efficient manner. We also introduce latent DiffiT which consists of transformer model with the proposed self-attention layers, for high-resolution image generation. Our results show that DiffiT is surprisingly effective in generating high-fidelity images, and it achieves state-of-the-art (SOTA) benchmarks on a variety of class-conditional and unconditional synthesis tasks. In the latent space, DiffiT achieves a new SOTA FID score of 1.73 on ImageNet-256 dataset. Repository: https://github.com/NVlabs/DiffiT


Score-based Diffusion Models in Function Space

arXiv.org Machine Learning

Diffusion models have recently emerged as a powerful framework for generative modeling. They consist of a forward process that perturbs input data with Gaussian white noise and a reverse process that learns a score function to generate samples by denoising. Despite their tremendous success, they are mostly formulated on finite-dimensional spaces, e.g. Euclidean, limiting their applications to many domains where the data has a functional form such as in scientific computing and 3D geometric data analysis. In this work, we introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space. In DDOs, the forward process perturbs input functions gradually using a Gaussian process. The generative process is formulated by integrating a function-valued Langevin dynamic. Our approach requires an appropriate notion of the score for the perturbed data distribution, which we obtain by generalizing denoising score matching to function spaces that can be infinite-dimensional. We show that the corresponding discretized algorithm generates accurate samples at a fixed cost that is independent of the data resolution. We theoretically and numerically verify the applicability of our approach on a set of problems, including generating solutions to the Navier-Stokes equation viewed as the push-forward distribution of forcings from a Gaussian Random Field (GRF).


DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies

arXiv.org Artificial Intelligence

In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique capabilities through AI system technology innovations to help domain experts to unlock today's biggest science mysteries. By leveraging DeepSpeed's current technology pillars (training, inference and compression) as base technology enablers, DeepSpeed4Science will create a new set of AI system technologies tailored for accelerating scientific discoveries by addressing their unique complexity beyond the common technical approaches used for accelerating generic large language models (LLMs). In this paper, we showcase the early progress we made with DeepSpeed4Science in addressing two of the critical system challenges in structural biology research.