Vaglini, Gigliola
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search
Galatolo, Federico A., Cimino, Mario G. C. A., Vaglini, Gigliola
In this research work we present GLaSS, a novel zero-shot framework to generate an image(or a caption) corresponding to a given caption(or image). GLaSS is based on the CLIP neural network which given an image and a descriptive caption provides similar embeddings. Differently, GLaSS takes a caption (or an image) as an input, and generates the image (or the caption) whose CLIP embedding is most similar to the input one. This optimal image (or caption) is produced via a generative network after an exploration by a genetic algorithm. Promising results are shown, based on the experimentation of the image generators BigGAN and StyleGAN2, and of the text generator GPT2.
Formal derivation of Mesh Neural Networks with their Forward-Only gradient Propagation
Galatolo, Federico A., Cimino, Mario G. C. A., Vaglini, Gigliola
This paper proposes the Mesh Neural Network (MNN), a novel architecture which allows neurons to be connected in any topology, to efficiently route information. In MNNs, information is propagated between neurons throughout a state transition function. State and error gradients are then directly computed from state updates without backward computation. The MNN architecture and the error propagation schema is formalized and derived in tensor algebra. The proposed computational model can fully supply a gradient descent process, and is suitable for very large scale NNs, due to its expressivity and training efficiency, with respect to NNs based on back-propagation and computational graphs.
Stigmergy-based modeling to discover urban activity patterns from positioning data
Alfeo, Antonio L., Cimino, Mario G. C. A., Egidi, Sara, Lepri, Bruno, Pentland, Alex, Vaglini, Gigliola
Positioning data offer a remarkable source of information to analyze crowds urban dynamics. However, discovering urban activity patterns from the emergent behavior of crowds involves complex system modeling. An alternative approach is to adopt computational techniques belonging to the emergent paradigm, which enables self-organization of data and allows adaptive analysis. Specifically, our approach is based on stigmergy. By using stigmergy each sample position is associated with a digital pheromone deposit, which progressively evaporates and aggregates with other deposits according to their spatiotemporal proximity. Based on this principle, we exploit positioning data to identify high density areas (hotspots) and characterize their activity over time. This characterization allows the comparison of dynamics occurring in different days, providing a similarity measure exploitable by clustering techniques. Thus, we cluster days according to their activity behavior, discovering unexpected urban activity patterns. As a case study, we analyze taxi traces in New York City during 2015.
Using stigmergy as a computational memory in the design of recurrent neural networks
Galatolo, Federico A., Cimino, Mario G. C. A., Vaglini, Gigliola
In this paper, a novel architecture of Recurrent Neural Network (RNN) is designed and experimented. The proposed RNN adopts a computational memory based on the concept of stigmergy. The basic principle of a Stigmergic Memory (SM) is that the activity of deposit/removal of a quantity in the SM stimulates the next activities of deposit/removal. Accordingly, subsequent SM activities tend to reinforce/weaken each other, generating a coherent coordination between the SM activities and the input temporal stimulus. We show that, in a problem of supervised classification, the SM encodes the temporal input in an emergent representational model, by coordinating the deposit, removal and classification activities. This study lays down a basic framework for the derivation of a SM-RNN. A formal ontology of SM is discussed, and the SM-RNN architecture is detailed. To appreciate the computational power of an SM-RNN, comparative NNs have been selected and trained to solve the MNIST handwritten digits recognition benchmark in its two variants: spatial (sequences of bitmap rows) and temporal (sequences of pen strokes).
Using stigmergy to incorporate the time into artificial neural networks
Galatolo, Federico A., Cimino, Mario G. C. A., Vaglini, Gigliola
A current research trend in neurocomputing involves the design of novel artificial neural networks incorporating the concept of time into their operating model. In this paper, a novel architecture that employs stigmergy is proposed. Computational stigmergy is used to dynamically increase (or decrease) the strength of a connection, or the activation level, of an artificial neuron when stimulated (or released). This study lays down a basic framework for the derivation of a stigmergic NN with a related training algorithm. To show its potential, some pilot experiments have been reported. The XOR problem is solved by using only one single stigmergic neuron with one input and one output. A static NN, a stigmergic NN, a recurrent NN and a long short-term memory NN have been trained to solve the MNIST digits recognition benchmark.
A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage
Alfeo, Antonio L., Cimino, Mario G. C. A., Egidi, Sara, Lepri, Bruno, Vaglini, Gigliola
A key aspect of a sustainable urban transportation system is the effectiveness of transportation policies. To be effective, a policy has to consider a broad range of elements, such as pollution emission, traffic flow, and human mobility. Due to the complexity and variability of these elements in the urban area, to produce effective policies remains a very challenging task. With the introduction of the smart city paradigm, a widely available amount of data can be generated in the urban spaces. Such data can be a fundamental source of knowledge to improve policies because they can reflect the sustainability issues underlying the city. In this context, we propose an approach to exploit urban positioning data based on stigmergy, a bio-inspired mechanism providing scalar and temporal aggregation of samples. By employing stigmergy, samples in proximity with each other are aggregated into a functional structure called trail. The trail summarizes relevant dynamics in data and allows matching them, providing a measure of their similarity. Moreover, this mechanism can be specialized to unfold specific dynamics. Specifically, we identify high-density urban areas (i.e hotspots), analyze their activity over time, and unfold anomalies. Moreover, by matching activity patterns, a continuous measure of the dissimilarity with respect to the typical activity pattern is provided. This measure can be used by policy makers to evaluate the effect of policies and change them dynamically. As a case study, we analyze taxi trip data gathered in Manhattan from 2013 to 2015.