Uno, Yoji
Integration of Visual and Somatosensory Information for Preshaping Hand in Grasping Movements
Uno, Yoji, Fukumura, Naohiro, Suzuki, Ryoji, Kawato, Mitsuo
The primate brain must solve two important problems in grasping movements. The first problem concerns the recognition of grasped objects: specifically, how does the brain integrate visual and motor information on a grasped object? The second problem concerns hand shape planning: specifically, how does the brain design the hand configuration suited to the shape of the object and the manipulation task? A neural network model that solves these problems has been developed. The operations of the network are divided into a learning phase and an optimization phase. In the learning phase, internal representations, which depend on the grasped objects and the task, are acquired by integrating visual and somatosensory information. In the optimization phase, the most suitable hand shape for grasping an object is determined by using a relaxation computation of the network.
Integration of Visual and Somatosensory Information for Preshaping Hand in Grasping Movements
Uno, Yoji, Fukumura, Naohiro, Suzuki, Ryoji, Kawato, Mitsuo
The primate brain must solve two important problems in grasping movements. Thefirst problem concerns the recognition of grasped objects: specifically, how does the brain integrate visual and motor information on a grasped object? The second problem concerns hand shape planning: specifically, how does the brain design the hand configuration suited to the shape of the object and the manipulation task? A neural network model that solves these problems has been developed.
Integration of Visual and Somatosensory Information for Preshaping Hand in Grasping Movements
Uno, Yoji, Fukumura, Naohiro, Suzuki, Ryoji, Kawato, Mitsuo
The primate brain must solve two important problems in grasping movements. The first problem concerns the recognition of grasped objects: specifically, how does the brain integrate visual and motor information on a grasped object? The second problem concerns hand shape planning: specifically, how does the brain design the hand configuration suited to the shape of the object and the manipulation task? A neural network model that solves these problems has been developed. The operations of the network are divided into a learning phase and an optimization phase. In the learning phase, internal representations, which depend on the grasped objects and the task, are acquired by integrating visual and somatosensory information. In the optimization phase, the most suitable hand shape for grasping an object is determined by using a relaxation computation of the network.
Simulation of Optimal Movements Using the Minimum-Muscle-Tension-Change Model
Dornay, Menashe, Uno, Yoji, Kawato, Mitsuo, Suzuki, Ryoji
This work discusses various optimization techniques which were proposed in models for controlling arm movements. In particular, the minimum-muscle-tension-change model is investigated. A dynamic simulator of the monkey's arm, including seventeen single and double joint muscles, is utilized to generate horizontal hand movements. The hand trajectories produced by this algorithm are discussed.
Simulation of Optimal Movements Using the Minimum-Muscle-Tension-Change Model
Dornay, Menashe, Uno, Yoji, Kawato, Mitsuo, Suzuki, Ryoji
This work discusses various optimization techniques which were proposed in models for controlling arm movements. In particular, the minimum-muscle-tension-change model is investigated. A dynamic simulator of the monkey's arm, including seventeen single and double joint muscles, is utilized to generate horizontal hand movements. The hand trajectories produced by this algorithm are discussed.
Simulation of Optimal Movements Using the Minimum-Muscle-Tension-Change Model
Dornay, Menashe, Uno, Yoji, Kawato, Mitsuo, Suzuki, Ryoji
This work discusses various optimization techniques which were proposed in models for controlling arm movements. In particular, the minimum-muscle-tension-change model is investigated. A dynamic simulator of the monkey's arm, including seventeen single and double joint muscles, is utilized to generate horizontal hand movements. The hand trajectories produced by this algorithm are discussed.