Goto

Collaborating Authors

 Tun, Yan Kyaw


Towards Satellite Non-IID Imagery: A Spectral Clustering-Assisted Federated Learning Approach

arXiv.org Artificial Intelligence

Low Earth orbit (LEO) satellites are capable of gathering abundant Earth observation data (EOD) to enable different Internet of Things (IoT) applications. However, to accomplish an effective EOD processing mechanism, it is imperative to investigate: 1) the challenge of processing the observed data without transmitting those large-size data to the ground because the connection between the satellites and the ground stations is intermittent, and 2) the challenge of processing the non-independent and identically distributed (non-IID) satellite data. In this paper, to cope with those challenges, we propose an orbit-based spectral clustering-assisted clustered federated self-knowledge distillation (OSC-FSKD) approach for each orbit of an LEO satellite constellation, which retains the advantage of FL that the observed data does not need to be sent to the ground. Specifically, we introduce normalized Laplacian-based spectral clustering (NLSC) into federated learning (FL) to create clustered FL in each round to address the challenge resulting from non-IID data. Particularly, NLSC is adopted to dynamically group clients into several clusters based on cosine similarities calculated by model updates. In addition, self-knowledge distillation is utilized to construct each local client, where the most recent updated local model is used to guide current local model training. Experiments demonstrate that the observation accuracy obtained by the proposed method is separately 1.01x, 2.15x, 1.10x, and 1.03x higher than that of pFedSD, FedProx, FedAU, and FedALA approaches using the SAT4 dataset. The proposed method also shows superiority when using other datasets.


Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning

arXiv.org Artificial Intelligence

In this paper, a novel generative adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association in NTNs. Traditional reinforcement learning (RL) methods for wireless network optimization often rely on manually designed reward functions, which can require extensive parameter tuning. To overcome these limitations, we employ inverse RL (IRL), specifically leveraging the GAIL framework, to automatically learn reward functions without manual design. We augment this framework with an asynchronous federated learning approach, enabling decentralized multi-satellite systems to collaboratively derive optimal policies. The proposed method aims to maximize spectrum efficiency (SE) while meeting minimum information rate requirements for RUEs. To address the non-convex, NP-hard nature of this problem, we combine the many-to-one matching theory with a multi-agent asynchronous federated IRL (MA-AFIRL) framework. This allows agents to learn through asynchronous environmental interactions, improving training efficiency and scalability. The expert policy is generated using the Whale optimization algorithm (WOA), providing data to train the automatic reward function within GAIL. Simulation results show that the proposed MA-AFIRL method outperforms traditional RL approaches, achieving a $14.6\%$ improvement in convergence and reward value. The novel GAIL-driven policy learning establishes a novel benchmark for 6G NTN optimization.


Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach

arXiv.org Artificial Intelligence

Sixth-generation (6G) networks leverage simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) to overcome the limitations of traditional RISs. However, deploying STAR-RISs indoors presents challenges in interference mitigation, power consumption, and real-time configuration. In this work, a novel network architecture utilizing multiple access points (APs) and STAR-RISs is proposed for indoor communication. An optimization problem encompassing user assignment, access point beamforming, and STAR-RIS phase control for reflection and transmission is formulated. The inherent complexity of the formulated problem necessitates a decomposition approach for an efficient solution. This involves tackling different sub-problems with specialized techniques: a many-to-one matching algorithm is employed to assign users to appropriate access points, optimizing resource allocation. To facilitate efficient resource management, access points are grouped using a correlation-based K-means clustering algorithm. Multi-agent deep reinforcement learning (MADRL) is leveraged to optimize the control of the STAR-RIS. Yu Min Park, Sheikh Salman Hassan, Eui-Nam Huh, and Choong Seon Hong are with the Department of Computer Science and Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Rep. of Korea, e-mails:{yumin0906, salman0335, johnhuh, cshong}@khu.ac.kr. Yan Kyaw Tun is with the Department of Electronic Systems, Aalborg University, A. C. Meyers Vรฆnge 15, 2450 Kรธbenhavn, e-mail: ykt@es.aau.dk. Walid Saad is with the Bradley Department of Electrical and Computer Engineering, Virginia Tech, VA, 24061, USA. Additionally, the proposed MADRL approach incorporates convex approximation (CA).


Joint User Pairing and Beamforming Design of Multi-STAR-RISs-Aided NOMA in the Indoor Environment via Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

The development of 6G/B5G wireless networks, which have requirements that go beyond current 5G networks, is gaining interest from academia and industry. However, to increase 6G/B5G network quality, conventional cellular networks that rely on terrestrial base stations are constrained geographically and economically. Meanwhile, NOMA allows multiple users to share the same resources, which improves the spectral efficiency of the system and has the advantage of supporting a larger number of users. Additionally, by intelligently manipulating the phase and amplitude of both the reflected and transmitted signals, STAR-RISs can achieve improved coverage, increased spectral efficiency, and enhanced communication reliability. However, STAR-RISs must simultaneously optimize the amplitude and phase shift corresponding to reflection and transmission, which makes the existing terrestrial networks more complicated and is considered a major challenging issue. Motivated by the above, we study the joint user pairing for NOMA and beamforming design of Multi-STAR-RISs in an indoor environment. Then, we formulate the optimization problem with the objective of maximizing the total throughput of MUs by jointly optimizing the decoding order, user pairing, active beamforming, and passive beamforming. However, the formulated problem is a MINLP. To address this challenge, we first introduce the decoding order for NOMA networks. Next, we decompose the original problem into two subproblems, namely: 1) MU pairing and 2) Beamforming optimization under the optimal decoding order. For the first subproblem, we employ correlation-based K-means clustering to solve the user pairing problem. Then, to jointly deal with beamforming vector optimizations, we propose MAPPO, which can make quick decisions in the given environment owing to its low complexity.


An Efficient Federated Learning Framework for Training Semantic Communication System

arXiv.org Artificial Intelligence

Semantic communication has emerged as a pillar for the next generation of communication systems due to its capabilities in alleviating data redundancy. Most semantic communication systems are built upon advanced deep learning models whose training performance heavily relies on data availability. Existing studies often make unrealistic assumptions of a readily accessible data source, where in practice, data is mainly created on the client side. Due to privacy and security concerns, the transmission of data is restricted, which is necessary for conventional centralized training schemes. To address this challenge, we explore semantic communication in a federated learning (FL) setting that utilizes client data without leaking privacy. Additionally, we design our system to tackle the communication overhead by reducing the quantity of information delivered in each global round. In this way, we can save significant bandwidth for resource-limited devices and reduce overall network traffic. Finally, we introduce a mechanism to aggregate the global model from clients, called FedLol. Extensive simulation results demonstrate the effectiveness of our proposed technique compared to baseline methods.