Goto

Collaborating Authors

 Tukan, Murad


Practical $0.385$-Approximation for Submodular Maximization Subject to a Cardinality Constraint

arXiv.org Artificial Intelligence

Non-monotone constrained submodular maximization plays a crucial role in various machine learning applications. However, existing algorithms often struggle with a trade-off between approximation guarantees and practical efficiency. The current state-of-the-art is a recent $0.401$-approximation algorithm, but its computational complexity makes it highly impractical. The best practical algorithms for the problem only guarantee $1/e$-approximation. In this work, we present a novel algorithm for submodular maximization subject to a cardinality constraint that combines a guarantee of $0.385$-approximation with a low and practical query complexity of $O(n+k^2)$. Furthermore, we evaluate the empirical performance of our algorithm in experiments based on various machine learning applications, including Movie Recommendation, Image Summarization, and more. These experiments demonstrate the efficacy of our approach.


ORBSLAM3-Enhanced Autonomous Toy Drones: Pioneering Indoor Exploration

arXiv.org Artificial Intelligence

Navigating toy drones through uncharted GPS-denied indoor spaces poses significant difficulties due to their reliance on GPS for location determination. In such circumstances, the necessity for achieving proper navigation is a primary concern. In response to this formidable challenge, we introduce a real-time autonomous indoor exploration system tailored for drones equipped with a monocular \emph{RGB} camera. Our system utilizes \emph{ORB-SLAM3}, a state-of-the-art vision feature-based SLAM, to handle both the localization of toy drones and the mapping of unmapped indoor terrains. Aside from the practicability of \emph{ORB-SLAM3}, the generated maps are represented as sparse point clouds, making them prone to the presence of outlier data. To address this challenge, we propose an outlier removal algorithm with provable guarantees. Furthermore, our system incorporates a novel exit detection algorithm, ensuring continuous exploration by the toy drone throughout the unfamiliar indoor environment. We also transform the sparse point to ensure proper path planning using existing path planners. To validate the efficacy and efficiency of our proposed system, we conducted offline and real-time experiments on the autonomous exploration of indoor spaces. The results from these endeavors demonstrate the effectiveness of our methods.


Dataset Distillation Meets Provable Subset Selection

arXiv.org Artificial Intelligence

Deep learning has grown tremendously over recent years, yielding state-of-the-art results in various fields. However, training such models requires huge amounts of data, increasing the computational time and cost. To address this, dataset distillation was proposed to compress a large training dataset into a smaller synthetic one that retains its performance -- this is usually done by (1) uniformly initializing a synthetic set and (2) iteratively updating/learning this set according to a predefined loss by uniformly sampling instances from the full data. In this paper, we improve both phases of dataset distillation: (1) we present a provable, sampling-based approach for initializing the distilled set by identifying important and removing redundant points in the data, and (2) we further merge the idea of data subset selection with dataset distillation, by training the distilled set on ``important'' sampled points during the training procedure instead of randomly sampling the next batch. To do so, we define the notion of importance based on the relative contribution of instances with respect to two different loss functions, i.e., one for the initialization phase (a kernel fitting function for kernel ridge regression and $K$-means based loss function for any other distillation method), and the relative cross-entropy loss (or any other predefined loss) function for the training phase. Finally, we provide experimental results showing how our method can latch on to existing dataset distillation techniques and improve their performance.


On the Size and Approximation Error of Distilled Sets

arXiv.org Artificial Intelligence

Dataset Distillation is the task of synthesizing small datasets from large ones while still retaining comparable predictive accuracy to the original uncompressed dataset. Despite significant empirical progress in recent years, there is little understanding of the theoretical limitations/guarantees of dataset distillation, specifically, what excess risk is achieved by distillation compared to the original dataset, and how large are distilled datasets? In this work, we take a theoretical view on kernel ridge regression (KRR) based methods of dataset distillation such as Kernel Inducing Points. By transforming ridge regression in random Fourier features (RFF) space, we provide the first proof of the existence of small (size) distilled datasets and their corresponding excess risk for shift-invariant kernels. We prove that a small set of instances exists in the original input space such that its solution in the RFF space coincides with the solution of the original data. We further show that a KRR solution can be generated using this distilled set of instances which gives an approximation towards the KRR solution optimized on the full input data. The size of this set is linear in the dimension of the RFF space of the input set or alternatively near linear in the number of effective degrees of freedom, which is a function of the kernel, number of datapoints, and the regularization parameter $\lambda$. The error bound of this distilled set is also a function of $\lambda$. We verify our bounds analytically and empirically.


AutoCoreset: An Automatic Practical Coreset Construction Framework

arXiv.org Artificial Intelligence

A coreset is a tiny weighted subset of an input set, that closely resembles the loss function, with respect to a certain set of queries. Coresets became prevalent in machine learning as they have shown to be advantageous for many applications. While coreset research is an active research area, unfortunately, coresets are constructed in a problem-dependent manner, where for each problem, a new coreset construction algorithm is usually suggested, a process that may take time or may be hard for new researchers in the field. Even the generic frameworks require additional (problem-dependent) computations or proofs to be done by the user. Besides, many problems do not have (provable) small coresets, limiting their applicability. To this end, we suggest an automatic practical framework for constructing coresets, which requires (only) the input data and the desired cost function from the user, without the need for any other task-related computation to be done by the user. To do so, we reduce the problem of approximating a loss function to an instance of vector summation approximation, where the vectors we aim to sum are loss vectors of a specific subset of the queries, such that we aim to approximate the image of the function on this subset. We show that while this set is limited, the coreset is quite general. An extensive experimental study on various machine learning applications is also conducted. Finally, we provide a ``plug and play" style implementation, proposing a user-friendly system that can be easily used to apply coresets for many problems. Full open source code can be found at \href{https://github.com/alaamaalouf/AutoCoreset}{\text{https://github.com/alaamaalouf/AutoCoreset}}. We believe that these contributions enable future research and easier use and applications of coresets.


Provable Data Subset Selection For Efficient Neural Network Training

arXiv.org Artificial Intelligence

Radial basis function neural networks (\emph{RBFNN}) are {well-known} for their capability to approximate any continuous function on a closed bounded set with arbitrary precision given enough hidden neurons. In this paper, we introduce the first algorithm to construct coresets for \emph{RBFNNs}, i.e., small weighted subsets that approximate the loss of the input data on any radial basis function network and thus approximate any function defined by an \emph{RBFNN} on the larger input data. In particular, we construct coresets for radial basis and Laplacian loss functions. We then use our coresets to obtain a provable data subset selection algorithm for training deep neural networks. Since our coresets approximate every function, they also approximate the gradient of each weight in a neural network, which is a particular function on the input. We then perform empirical evaluations on function approximation and dataset subset selection on popular network architectures and data sets, demonstrating the efficacy and accuracy of our coreset construction.


An Efficient Drifters Deployment Strategy to Evaluate Water Current Velocity Fields

arXiv.org Artificial Intelligence

Water current prediction is essential for understanding ecosystems, and to shed light on the role of the ocean in the global climate context. Solutions vary from physical modeling, and long-term observations, to short-term measurements. In this paper, we consider a common approach for water current prediction that uses Lagrangian floaters for water current prediction by interpolating the trajectory of the elements to reflect the velocity field. Here, an important aspect that has not been addressed before is where to initially deploy the drifting elements such that the acquired velocity field would efficiently represent the water current. To that end, we use a clustering approach that relies on a physical model of the velocity field. Our method segments the modeled map and determines the deployment locations as those that will lead the floaters to 'visit' the center of the different segments. This way, we validate that the area covered by the floaters will capture the in-homogeneously in the velocity field. Exploration over a dataset of velocity field maps that span over a year demonstrates the applicability of our approach, and shows a considerable improvement over the common approach of uniformly randomly choosing the initial deployment sites. Finally, our implementation code can be found in [1].


Compressed Deep Networks: Goodbye SVD, Hello Robust Low-Rank Approximation

arXiv.org Artificial Intelligence

A common technique for compressing a neural network is to compute the $k$-rank $\ell_2$ approximation $A_{k,2}$ of the matrix $A\in\mathbb{R}^{n\times d}$ that corresponds to a fully connected layer (or embedding layer). Here, $d$ is the number of the neurons in the layer, $n$ is the number in the next one, and $A_{k,2}$ can be stored in $O((n+d)k)$ memory instead of $O(nd)$. This $\ell_2$-approximation minimizes the sum over every entry to the power of $p=2$ in the matrix $A - A_{k,2}$, among every matrix $A_{k,2}\in\mathbb{R}^{n\times d}$ whose rank is $k$. While it can be computed efficiently via SVD, the $\ell_2$-approximation is known to be very sensitive to outliers ("far-away" rows). Hence, machine learning uses e.g. Lasso Regression, $\ell_1$-regularization, and $\ell_1$-SVM that use the $\ell_1$-norm. This paper suggests to replace the $k$-rank $\ell_2$ approximation by $\ell_p$, for $p\in [1,2]$. We then provide practical and provable approximation algorithms to compute it for any $p\geq1$, based on modern techniques in computational geometry. Extensive experimental results on the GLUE benchmark for compressing BERT, DistilBERT, XLNet, and RoBERTa confirm this theoretical advantage. For example, our approach achieves $28\%$ compression of RoBERTa's embedding layer with only $0.63\%$ additive drop in the accuracy (without fine-tuning) in average over all tasks in GLUE, compared to $11\%$ drop using the existing $\ell_2$-approximation. Open code is provided for reproducing and extending our results.


Coresets for Near-Convex Functions

arXiv.org Machine Learning

Coreset is usually a small weighted subset of $n$ input points in $\mathbb{R}^d$, that provably approximates their loss function for a given set of queries (models, classifiers, etc.). Coresets become increasingly common in machine learning since existing heuristics or inefficient algorithms may be improved by running them possibly many times on the small coreset that can be maintained for streaming distributed data. Coresets can be obtained by sensitivity (importance) sampling, where its size is proportional to the total sum of sensitivities. Unfortunately, computing the sensitivity of each point is problem dependent and may be harder to compute than the original optimization problem at hand. We suggest a generic framework for computing sensitivities (and thus coresets) for wide family of loss functions which we call near-convex functions. This is by suggesting the $f$-SVD factorization that generalizes the SVD factorization of matrices to functions. Example applications include coresets that are either new or significantly improves previous results, such as SVM, Logistic regression, M-estimators, and $\ell_z$-regression. Experimental results and open source are also provided.


Faster PAC Learning and Smaller Coresets via Smoothed Analysis

arXiv.org Machine Learning

PAC-learning usually aims to compute a small subset ($\varepsilon$-sample/net) from $n$ items, that provably approximates a given loss function for every query (model, classifier, hypothesis) from a given set of queries, up to an additive error $\varepsilon\in(0,1)$. Coresets generalize this idea to support multiplicative error $1\pm\varepsilon$. Inspired by smoothed analysis, we suggest a natural generalization: approximate the \emph{average} (instead of the worst-case) error over the queries, in the hope of getting smaller subsets. The dependency between errors of different queries implies that we may no longer apply the Chernoff-Hoeffding inequality for a fixed query, and then use the VC-dimension or union bound. This paper provides deterministic and randomized algorithms for computing such coresets and $\varepsilon$-samples of size independent of $n$, for any finite set of queries and loss function. Example applications include new and improved coreset constructions for e.g. streaming vector summarization [ICML'17] and $k$-PCA [NIPS'16]. Experimental results with open source code are provided.