Tu, Wei-Wei
MQE: Unleashing the Power of Interaction with Multi-agent Quadruped Environment
Xiong, Ziyan, Chen, Bo, Huang, Shiyu, Tu, Wei-Wei, He, Zhaofeng, Gao, Yang
The advent of deep reinforcement learning (DRL) has significantly advanced the field of robotics, particularly in the control and coordination of quadruped robots. However, the complexity of real-world tasks often necessitates the deployment of multi-robot systems capable of sophisticated interaction and collaboration. To address this need, we introduce the Multi-agent Quadruped Environment (MQE), a novel platform designed to facilitate the development and evaluation of multi-agent reinforcement learning (MARL) algorithms in realistic and dynamic scenarios. MQE emphasizes complex interactions between robots and objects, hierarchical policy structures, and challenging evaluation scenarios that reflect real-world applications. We present a series of collaborative and competitive tasks within MQE, ranging from simple coordination to complex adversarial interactions, and benchmark state-of-the-art MARL algorithms. Our findings indicate that hierarchical reinforcement learning can simplify task learning, but also highlight the need for advanced algorithms capable of handling the intricate dynamics of multi-agent interactions. MQE serves as a stepping stone towards bridging the gap between simulation and practical deployment, offering a rich environment for future research in multi-agent systems and robot learning. For open-sourced code and more details of MQE, please refer to https://ziyanx02.github.io/multiagent-quadruped-environment/ .
LLMArena: Assessing Capabilities of Large Language Models in Dynamic Multi-Agent Environments
Chen, Junzhe, Hu, Xuming, Liu, Shuodi, Huang, Shiyu, Tu, Wei-Wei, He, Zhaofeng, Wen, Lijie
Recent advancements in large language models (LLMs) have revealed their potential for achieving autonomous agents possessing human-level intelligence. However, existing benchmarks for evaluating LLM Agents either use static datasets, potentially leading to data leakage or focus only on single-agent scenarios, overlooking the complexities of multi-agent interactions. There is a lack of a benchmark that evaluates the diverse capabilities of LLM agents in multi-agent, dynamic environments. To this end, we introduce LLMArena, a novel and easily extensible framework for evaluating the diverse capabilities of LLM in multi-agent dynamic environments. LLMArena encompasses seven distinct gaming environments, employing Trueskill scoring to assess crucial abilities in LLM agents, including spatial reasoning, strategic planning, numerical reasoning, risk assessment, communication, opponent modeling, and team collaboration. We conduct an extensive experiment and human evaluation among different sizes and types of LLMs, showing that LLMs still have a significant journey ahead in their development towards becoming fully autonomous agents, especially in opponent modeling and team collaboration. We hope LLMArena could guide future research towards enhancing these capabilities in LLMs, ultimately leading to more sophisticated and practical applications in dynamic, multi-agent settings. The code and data will be available.
DGPO: Discovering Multiple Strategies with Diversity-Guided Policy Optimization
Chen, Wentse, Huang, Shiyu, Chiang, Yuan, Pearce, Tim, Tu, Wei-Wei, Chen, Ting, Zhu, Jun
Most reinforcement learning algorithms seek a single optimal strategy that solves a given task. However, it can often be valuable to learn a diverse set of solutions, for instance, to make an agent's interaction with users more engaging, or improve the robustness of a policy to an unexpected perturbance. We propose Diversity-Guided Policy Optimization (DGPO), an on-policy algorithm that discovers multiple strategies for solving a given task. Unlike prior work, it achieves this with a shared policy network trained over a single run. Specifically, we design an intrinsic reward based on an information-theoretic diversity objective. Our final objective alternately constraints on the diversity of the strategies and on the extrinsic reward. We solve the constrained optimization problem by casting it as a probabilistic inference task and use policy iteration to maximize the derived lower bound. Experimental results show that our method efficiently discovers diverse strategies in a wide variety of reinforcement learning tasks. Compared to baseline methods, DGPO achieves comparable rewards, while discovering more diverse strategies, and often with better sample efficiency.
OpenRL: A Unified Reinforcement Learning Framework
Huang, Shiyu, Chen, Wentse, Sun, Yiwen, Bie, Fuqing, Tu, Wei-Wei
We present OpenRL, an advanced reinforcement learning (RL) framework designed to accommodate a diverse array of tasks, from single-agent challenges to complex multi-agent systems. OpenRL's robust support for self-play training empowers agents to develop advanced strategies in competitive settings. Notably, OpenRL integrates Natural Language Processing (NLP) with RL, enabling researchers to address a combination of RL training and language-centric tasks effectively. Leveraging PyTorch's robust capabilities, OpenRL exemplifies modularity and a user-centric approach. It offers a universal interface that simplifies the user experience for beginners while maintaining the flexibility experts require for innovation and algorithm development. This equilibrium enhances the framework's practicality, adaptability, and scalability, establishing a new standard in RL research.
Efficient Stochastic Approximation of Minimax Excess Risk Optimization
Zhang, Lijun, Tu, Wei-Wei
While traditional distributionally robust optimization (DRO) aims to minimize the maximal risk over a set of distributions, Agarwal and Zhang (2022) recently proposed a variant that replaces risk with excess risk. Compared to DRO, the new formulation -- minimax excess risk optimization (MERO) has the advantage of suppressing the effect of heterogeneous noise in different distributions. However, the choice of excess risk leads to a very challenging minimax optimization problem, and currently there exists only an inefficient algorithm for empirical MERO. In this paper, we develop efficient stochastic approximation approaches which directly target MERO. Specifically, we leverage techniques from stochastic convex optimization to estimate the minimal risk of every distribution, and solve MERO as a stochastic convex-concave optimization (SCCO) problem with biased gradients. The presence of bias makes existing theoretical guarantees of SCCO inapplicable, and fortunately, we demonstrate that the bias, caused by the estimation error of the minimal risk, is under-control. Thus, MERO can still be optimized with a nearly optimal convergence rate. Moreover, we investigate a practical scenario where the quantity of samples drawn from each distribution may differ, and propose a stochastic approach that delivers distribution-dependent convergence rates.
TiZero: Mastering Multi-Agent Football with Curriculum Learning and Self-Play
Lin, Fanqi, Huang, Shiyu, Pearce, Tim, Chen, Wenze, Tu, Wei-Wei
Multi-agent football poses an unsolved challenge in AI research. Existing work has focused on tackling simplified scenarios of the game, or else leveraging expert demonstrations. In this paper, we develop a multi-agent system to play the full 11 vs. 11 game mode, without demonstrations. This game mode contains aspects that present major challenges to modern reinforcement learning algorithms; multi-agent coordination, long-term planning, and non-transitivity. To address these challenges, we present TiZero; a self-evolving, multi-agent system that learns from scratch. TiZero introduces several innovations, including adaptive curriculum learning, a novel self-play strategy, and an objective that optimizes the policies of multiple agents jointly. Experimentally, it outperforms previous systems by a large margin on the Google Research Football environment, increasing win rates by over 30%. To demonstrate the generality of TiZero's innovations, they are assessed on several environments beyond football; Overcooked, Multi-agent Particle-Environment, Tic-Tac-Toe and Connect-Four.
Learning Graph-Enhanced Commander-Executor for Multi-Agent Navigation
Yang, Xinyi, Huang, Shiyu, Sun, Yiwen, Yang, Yuxiang, Yu, Chao, Tu, Wei-Wei, Yang, Huazhong, Wang, Yu
This paper investigates the multi-agent navigation problem, which requires multiple agents to reach the target goals in a limited time. Multi-agent reinforcement learning (MARL) has shown promising results for solving this issue. However, it is inefficient for MARL to directly explore the (nearly) optimal policy in the large search space, which is exacerbated as the agent number increases (e.g., 10+ agents) or the environment is more complex (e.g., 3D simulator). Goal-conditioned hierarchical reinforcement learning (HRL) provides a promising direction to tackle this challenge by introducing a hierarchical structure to decompose the search space, where the low-level policy predicts primitive actions in the guidance of the goals derived from the high-level policy. In this paper, we propose Multi-Agent Graph-Enhanced Commander-Executor (MAGE-X), a graph-based goal-conditioned hierarchical method for multi-agent navigation tasks. MAGE-X comprises a high-level Goal Commander and a low-level Action Executor. The Goal Commander predicts the probability distribution of goals and leverages them to assign each agent the most appropriate final target. The Action Executor utilizes graph neural networks (GNN) to construct a subgraph for each agent that only contains crucial partners to improve cooperation. Additionally, the Goal Encoder in the Action Executor captures the relationship between the agent and the designated goal to encourage the agent to reach the final target. The results show that MAGE-X outperforms the state-of-the-art MARL baselines with a 100% success rate with only 3 million training steps in multi-agent particle environments (MPE) with 50 agents, and at least a 12% higher success rate and 2x higher data efficiency in a more complicated quadrotor 3D navigation task.
Auto-KWS 2021 Challenge: Task, Datasets, and Baselines
Wang, Jingsong, He, Yuxuan, Zhao, Chunyu, Shao, Qijie, Tu, Wei-Wei, Ko, Tom, Lee, Hung-yi, Xie, Lei
Auto-KWS 2021 challenge calls for automated machine learning (AutoML) solutions to automate the process of applying machine learning to a customized keyword spotting task. Compared with other keyword spotting tasks, Auto-KWS challenge has the following three characteristics: 1) The challenge focuses on the problem of customized keyword spotting, where the target device can only be awakened by an enrolled speaker with his specified keyword. The speaker can use any language and accent to define his keyword. 2) All dataset of the challenge is recorded in realistic environment. It is to simulate different user scenarios. 3) Auto-KWS is a "code competition", where participants need to submit AutoML solutions, then the platform automatically runs the enrollment and prediction steps with the submitted code.This challenge aims at promoting the development of a more personalized and flexible keyword spotting system. Two baseline systems are provided to all participants as references.
AutoSpeech 2020: The Second Automated Machine Learning Challenge for Speech Classification
Wang, Jingsong, Ko, Tom, Xu, Zhen, Guo, Xiawei, Liu, Souxiang, Tu, Wei-Wei, Xie, Lei
The AutoSpeech challenge calls for automated machine learning (AutoML) solutions to automate the process of applying machine learning to speech processing tasks. These tasks, which cover a large variety of domains, will be shown to the automated system in a random order. Each time when the tasks are switched, the information of the new task will be hinted with its corresponding training set. Thus, every submitted solution should contain an adaptation routine which adapts the system to the new task. Compared to the first edition, the 2020 edition includes advances of 1) more speech tasks, 2) noisier data in each task, 3) a modified evaluation metric. This paper outlines the challenge and describe the competition protocol, datasets, evaluation metric, starting kit, and baseline systems.
Towards AutoML in the presence of Drift: first results
Madrid, Jorge G., Escalante, Hugo Jair, Morales, Eduardo F., Tu, Wei-Wei, Yu, Yang, Sun-Hosoya, Lisheng, Guyon, Isabelle, Sebag, Michele
Research progress in AutoML has lead to state of the art solutions that can cope quite wellwith supervised learning task, e.g., classification with AutoSklearn. However, so far thesesystems do not take into account the changing nature of evolving data over time (i.e., theystill assume i.i.d. data); even when this sort of domains are increasingly available in realapplications (e.g., spam filtering, user preferences, etc.). We describe a first attempt to de-velop an AutoML solution for scenarios in which data distribution changes relatively slowlyover time and in which the problem is approached in a lifelong learning setting. We extendAuto-Sklearn with sound and intuitive mechanisms that allow it to cope with this sort ofproblems. The extended Auto-Sklearn is combined with concept drift detection techniquesthat allow it to automatically determine when the initial models have to be adapted. Wereport experimental results in benchmark data from AutoML competitions that adhere tothis scenario. Results demonstrate the effectiveness of the proposed methodology.