Goto

Collaborating Authors

 Tse, David


Beyond the Best: Estimating Distribution Functionals in Infinite-Armed Bandits

arXiv.org Artificial Intelligence

In the infinite-armed bandit problem, each arm's average reward is sampled from an unknown distribution, and each arm can be sampled further to obtain noisy estimates of the average reward of that arm. Prior work focuses on identifying the best arm, i.e., estimating the maximum of the average reward distribution. We consider a general class of distribution functionals beyond the maximum, and propose unified meta algorithms for both the offline and online settings, achieving optimal sample complexities. We show that online estimation, where the learner can sequentially choose whether to sample a new or existing arm, offers no advantage over the offline setting for estimating the mean functional, but significantly reduces the sample complexity for other functionals such as the median, maximum, and trimmed mean. The matching lower bounds utilize several different Wasserstein distances. For the special case of median estimation, we identify a curious thresholding phenomenon on the indistinguishability between Gaussian convolutions with respect to the noise level, which may be of independent interest.


Group-Structured Adversarial Training

arXiv.org Machine Learning

Robust training methods against perturbations to the input data have received great attention in the machine learning literature. A standard approach in this direction is adversarial training which learns a model using adversarially-perturbed training samples. However, adversarial training performs suboptimally against perturbations structured across samples such as universal and group-sparse shifts that are commonly present in biological data such as gene expression levels of different tissues. In this work, we seek to close this optimality gap and introduce Group-Structured Adversarial Training (GSAT) which learns a model robust to perturbations structured across samples. We formulate GSAT as a non-convex concave minimax optimization problem which minimizes a group-structured optimal transport cost. Specifically, we focus on the applications of GSAT for group-sparse and rank-constrained perturbations modeled using group and nuclear norm penalties. In order to solve GSAT's non-smooth optimization problem in those cases, we propose a new minimax optimization algorithm called GDADMM by combining Gradient Descent Ascent (GDA) and Alternating Direction Method of Multipliers (ADMM). We present several applications of the GSAT framework to gain robustness against structured perturbations for image recognition and computational biology datasets.


Porcupine Neural Networks: Approximating Neural Network Landscapes

Neural Information Processing Systems

Neural networks have been used prominently in several machine learning and statistics applications. In general, the underlying optimization of neural networks is non-convex which makes analyzing their performance challenging. In this paper, we take another approach to this problem by constraining the network such that the corresponding optimization landscape has good theoretical properties without significantly compromising performance. In particular, for two-layer neural networks we introduce Porcupine Neural Networks (PNNs) whose weight vectors are constrained to lie over a finite set of lines. We show that most local optima of PNN optimizations are global while we have a characterization of regions where bad local optimizers may exist.


Deconstructing Generative Adversarial Networks

arXiv.org Machine Learning

We deconstruct the performance of GANs into three components: 1. Formulation: we propose a perturbation view of the population target of GANs. Building on this interpretation, we show that GANs can be viewed as a generalization of the robust statistics framework, and propose a novel GAN architecture, termed as Cascade GANs, to provably recover meaningful low-dimensional generator approximations when the real distribution is high-dimensional and corrupted by outliers. 2. Generalization: given a population target of GANs, we design a systematic principle, projection under admissible distance, to design GANs to meet the population requirement using finite samples. We implement our principle in three cases to achieve polynomial and sometimes near-optimal sample complexities: (1) learning an arbitrary generator under an arbitrary pseudonorm; (2) learning a Gaussian location family under TV distance, where we utilize our principle provide a new proof for the optimality of Tukey median viewed as GANs; (3) learning a low-dimensional Gaussian approximation of a high-dimensional arbitrary distribution under Wasserstein distance. We demonstrate a fundamental trade-off in the approximation error and statistical error in GANs, and show how to apply our principle with empirical samples to predict how many samples are sufficient for GANs in order not to suffer from the discriminator winning problem. 3. Optimization: we demonstrate alternating gradient descent is provably not locally asymptotically stable in optimizing the GAN formulation of PCA. We diagnose the problem as the minimax duality gap being non-zero, and propose a new GAN architecture whose duality gap is zero, where the value of the game is equal to the previous minimax value (not the maximin value). We prove the new GAN architecture is globally asymptotically stable in optimization under alternating gradient descent.


Porcupine Neural Networks: Approximating Neural Network Landscapes

Neural Information Processing Systems

Neural networks have been used prominently in several machine learning and statistics applications. In general, the underlying optimization of neural networks is non-convex which makes analyzing their performance challenging. In this paper, we take another approach to this problem by constraining the network such that the corresponding optimization landscape has good theoretical properties without significantly compromising performance. In particular, for two-layer neural networks we introduce Porcupine Neural Networks (PNNs) whose weight vectors are constrained to lie over a finite set of lines. We show that most local optima of PNN optimizations are global while we have a characterization of regions where bad local optimizers may exist. Moreover, our theoretical and empirical results suggest that an unconstrained neural network can be approximated using a polynomially-large PNN.


A Convex Duality Framework for GANs

Neural Information Processing Systems

Generative adversarial network (GAN) is a minimax game between a generator mimicking the true model and a discriminator distinguishing the samples produced by the generator from the real training samples. Given an unconstrained discriminator able to approximate any function, this game reduces to finding the generative model minimizing a divergence measure, e.g. the Jensen-Shannon (JS) divergence, to the data distribution. However, in practice the discriminator is constrained to be in a smaller class F such as neural nets. Then, a natural question is how the divergence minimization interpretation changes as we constrain F. In this work, we address this question by developing a convex duality framework for analyzing GANs. For a convex set F, this duality framework interprets the original GAN formulation as finding the generative model with minimum JS-divergence to the distributions penalized to match the moments of the data distribution, with the moments specified by the discriminators in F. We show that this interpretation more generally holds for f-GAN and Wasserstein GAN. As a byproduct, we apply the duality framework to a hybrid of f-divergence and Wasserstein distance. Unlike the f-divergence, we prove that the proposed hybrid divergence changes continuously with the generative model, which suggests regularizing the discriminator's Lipschitz constant in f-GAN and vanilla GAN. We numerically evaluate the power of the suggested regularization schemes for improving GAN's training performance.


Porcupine Neural Networks: Approximating Neural Network Landscapes

Neural Information Processing Systems

Neural networks have been used prominently in several machine learning and statistics applications. In general, the underlying optimization of neural networks is non-convex which makes analyzing their performance challenging. In this paper, we take another approach to this problem by constraining the network such that the corresponding optimization landscape has good theoretical properties without significantly compromising performance. In particular, for two-layer neural networks we introduce Porcupine Neural Networks (PNNs) whose weight vectors are constrained to lie over a finite set of lines. We show that most local optima of PNN optimizations are global while we have a characterization of regions where bad local optimizers may exist. Moreover, our theoretical and empirical results suggest that an unconstrained neural network can be approximated using a polynomially-large PNN.


A Convex Duality Framework for GANs

Neural Information Processing Systems

Generative adversarial network (GAN) is a minimax game between a generator mimicking the true model and a discriminator distinguishing the samples produced by the generator from the real training samples. Given an unconstrained discriminator able to approximate any function, this game reduces to finding the generative model minimizing a divergence measure, e.g. the Jensen-Shannon (JS) divergence, to the data distribution. However, in practice the discriminator is constrained to be in a smaller class F such as neural nets. Then, a natural question is how the divergence minimization interpretation changes as we constrain F. In this work, we address this question by developing a convex duality framework for analyzing GANs. For a convex set F, this duality framework interprets the original GAN formulation as finding the generative model with minimum JS-divergence to the distributions penalized to match the moments of the data distribution, with the moments specified by the discriminators in F. We show that this interpretation more generally holds for f-GAN and Wasserstein GAN. As a byproduct, we apply the duality framework to a hybrid of f-divergence and Wasserstein distance. Unlike the f-divergence, we prove that the proposed hybrid divergence changes continuously with the generative model, which suggests regularizing the discriminator's Lipschitz constant in f-GAN and vanilla GAN. We numerically evaluate the power of the suggested regularization schemes for improving GAN's training performance.


Generalizable Adversarial Training via Spectral Normalization

arXiv.org Machine Learning

Deep neural networks (DNNs) have set benchmarks on a wide array of supervised learning tasks. Trained DNNs, however, often lack robustness to minor adversarial perturbations to the input, which undermines their true practicality. Recent works have increased the robustness of DNNs by fitting networks using adversarially-perturbed training samples, but the improved performance can still be far below the performance seen in non-adversarial settings. A significant portion of this gap can be attributed to the decrease in generalization performance due to adversarial training. In this work, we extend the notion of margin loss to adversarial settings and bound the generalization error for DNNs trained under several well-known gradient-based attack schemes, motivating an effective regularization scheme based on spectral normalization of the DNN's weight matrices. We also provide a computationally-efficient method for normalizing the spectral norm of convolutional layers with arbitrary stride and padding schemes in deep convolutional networks. We evaluate the power of spectral normalization extensively on combinations of datasets, network architectures, and adversarial training schemes. The code is available at https://github.com/jessemzhang/dl_spectral_normalization.


A Convex Duality Framework for GANs

arXiv.org Machine Learning

Generative adversarial network (GAN) is a minimax game between a generator mimicking the true model and a discriminator distinguishing the samples produced by the generator from the real training samples. Given an unconstrained discriminator able to approximate any function, this game reduces to finding the generative model minimizing a divergence measure, e.g. the Jensen-Shannon (JS) divergence, to the data distribution. However, in practice the discriminator is constrained to be in a smaller class $\mathcal{F}$ such as neural nets. Then, a natural question is how the divergence minimization interpretation changes as we constrain $\mathcal{F}$. In this work, we address this question by developing a convex duality framework for analyzing GANs. For a convex set $\mathcal{F}$, this duality framework interprets the original GAN formulation as finding the generative model with minimum JS-divergence to the distributions penalized to match the moments of the data distribution, with the moments specified by the discriminators in $\mathcal{F}$. We show that this interpretation more generally holds for f-GAN and Wasserstein GAN. As a byproduct, we apply the duality framework to a hybrid of f-divergence and Wasserstein distance. Unlike the f-divergence, we prove that the proposed hybrid divergence changes continuously with the generative model, which suggests regularizing the discriminator's Lipschitz constant in f-GAN and vanilla GAN. We numerically evaluate the power of the suggested regularization schemes for improving GAN's training performance.