Tsarfaty, Reut
ECLeKTic: a Novel Challenge Set for Evaluation of Cross-Lingual Knowledge Transfer
Goldman, Omer, Shaham, Uri, Malkin, Dan, Eiger, Sivan, Hassidim, Avinatan, Matias, Yossi, Maynez, Joshua, Gilady, Adi Mayrav, Riesa, Jason, Rijhwani, Shruti, Rimell, Laura, Szpektor, Idan, Tsarfaty, Reut, Eyal, Matan
To achieve equitable performance across languages, multilingual large language models (LLMs) must be able to abstract knowledge beyond the language in which it was acquired. However, the current literature lacks reliable ways to measure LLMs' capability of cross-lingual knowledge transfer. To that end, we present ECLeKTic, a multilingual closed-book QA (CBQA) dataset that Evaluates Cross-Lingual Knowledge Transfer in a simple, black-box manner. We detected information with uneven coverage across languages by controlling for presence and absence of Wikipedia articles in 12 languages. We generated knowledge-seeking questions in a source language, for which the answer appears in a relevant Wikipedia article and translated them to all other 11 languages, for which the respective Wikipedias lack equivalent articles. Assuming that Wikipedia reflects the prominent knowledge in the LLM's training data, to solve ECLeKTic's CBQA task the model is required to transfer knowledge between languages. Experimenting with 8 LLMs, we show that SOTA models struggle to effectively share knowledge across, languages even if they can predict the answer well for queries in the same language the knowledge was acquired in.
Beyond English: The Impact of Prompt Translation Strategies across Languages and Tasks in Multilingual LLMs
Mondshine, Itai, Paz-Argaman, Tzuf, Tsarfaty, Reut
Despite advances in the multilingual capabilities of Large Language Models (LLMs) across diverse tasks, English remains the dominant language for LLM research and development. So, when working with a different language, this has led to the widespread practice of pre-translation, i.e., translating the task prompt into English before inference. Selective pre-translation, a more surgical approach, focuses on translating specific prompt components. However, its current use is sporagic and lacks a systematic research foundation. Consequently, the optimal pre-translation strategy for various multilingual settings and tasks remains unclear. In this work, we aim to uncover the optimal setup for pre-translation by systematically assessing its use. Specifically, we view the prompt as a modular entity, composed of four functional parts: instruction, context, examples, and output, either of which could be translated or not. We evaluate pre-translation strategies across 35 languages covering both low and high-resource languages, on various tasks including Question Answering (QA), Natural Language Inference (NLI), Named Entity Recognition (NER), and Abstractive Summarization. Our experiments show the impact of factors as similarity to English, translation quality and the size of pre-trained data, on the model performance with pre-translation. We suggest practical guidelines for choosing optimal strategies in various multilingual settings.
NoviCode: Generating Programs from Natural Language Utterances by Novices
Mordechai, Asaf Achi, Goldberg, Yoav, Tsarfaty, Reut
Current Text-to-Code models demonstrate impressive capabilities in generating executable code from natural language snippets. However, current studies focus on technical instructions and programmer-oriented language, and it is an open question whether these models can effectively translate natural language descriptions given by non-technical users and express complex goals, to an executable program that contains an intricate flow - composed of API access and control structures as loops, conditions, and sequences. To unlock the challenge of generating a complete program from a plain non-technical description we present NoviCode, a novel NL Programming task, which takes as input an API and a natural language description by a novice non-programmer and provides an executable program as output. To assess the efficacy of models on this task, we provide a novel benchmark accompanied by test suites wherein the generated program code is assessed not according to their form, but according to their functional execution. Our experiments show that, first, NoviCode is indeed a challenging task in the code synthesis domain, and that generating complex code from non-technical instructions goes beyond the current Text-to-Code paradigm. Second, we show that a novel approach wherein we align the NL utterances with the compositional hierarchical structure of the code, greatly enhances the performance of LLMs on this task, compared with the end-to-end Text-to-Code counterparts.
Unpacking Tokenization: Evaluating Text Compression and its Correlation with Model Performance
Goldman, Omer, Caciularu, Avi, Eyal, Matan, Cao, Kris, Szpektor, Idan, Tsarfaty, Reut
Despite it being the cornerstone of BPE, the most common tokenization algorithm, the importance of compression in the tokenization process is still unclear. In this paper, we argue for the theoretical importance of compression, that can be viewed as 0-gram language modeling where equal probability is assigned to all tokens. We also demonstrate the empirical importance of compression for downstream success of pre-trained language models. We control the compression ability of several BPE tokenizers by varying the amount of documents available during their training: from 1 million documents to a character-based tokenizer equivalent to no training data at all. We then pre-train English language models based on those tokenizers and fine-tune them over several tasks. We show that there is a correlation between tokenizers' compression and models' downstream performance, suggesting that compression is a reliable intrinsic indicator of tokenization quality. These correlations are more pronounced for generation tasks (over classification) or for smaller models (over large ones). We replicated a representative part of our experiments on Turkish and found similar results, confirming that our results hold for languages with typological characteristics dissimilar to English. We conclude that building better compressing tokenizers is a fruitful avenue for further research and for improving overall model performance.
HeSum: a Novel Dataset for Abstractive Text Summarization in Hebrew
Paz-Argaman, Tzuf, Mondshine, Itai, Mordechai, Asaf Achi, Tsarfaty, Reut
While large language models (LLMs) excel in various natural language tasks in English, their performance in lower-resourced languages like Hebrew, especially for generative tasks such as abstractive summarization, remains unclear. The high morphological richness in Hebrew adds further challenges due to the ambiguity in sentence comprehension and the complexities in meaning construction. In this paper, we address this resource and evaluation gap by introducing HeSum, a novel benchmark specifically designed for abstractive text summarization in Modern Hebrew. HeSum consists of 10,000 article-summary pairs sourced from Hebrew news websites written by professionals. Linguistic analysis confirms HeSum's high abstractness and unique morphological challenges. We show that HeSum presents distinct difficulties for contemporary state-of-the-art LLMs, establishing it as a valuable testbed for generative language technology in Hebrew, and MRLs generative challenges in general.
Superlatives in Context: Explicit and Implicit Domain Restrictions for Superlative Frames
Pyatkin, Valentina, Webber, Bonnie, Dagan, Ido, Tsarfaty, Reut
Superlatives are used to single out elements with a maximal/minimal property. Semantically, superlatives perform a set comparison: something (or some things) has the min/max property out of a set. As such, superlatives provide an ideal phenomenon for studying implicit phenomena and discourse restrictions. While this comparison set is often not explicitly defined, its (implicit) restrictions can be inferred from the discourse context the expression appears in. In this work we provide an extensive computational study on the semantics of superlatives. We propose a unified account of superlative semantics which allows us to derive a broad-coverage annotation schema. Using this unified schema we annotated a multi-domain dataset of superlatives and their semantic interpretations. We specifically focus on interpreting implicit or ambiguous superlative expressions, by analyzing how the discourse context restricts the set of interpretations. In a set of experiments we then analyze how well models perform at variations of predicting superlative semantics, with and without context. We show that the fine-grained semantics of superlatives in context can be challenging for contemporary models, including GPT-4.
Do Pretrained Contextual Language Models Distinguish between Hebrew Homograph Analyses?
Shmidman, Avi, Shmidman, Cheyn Shmuel, Bareket, Dan, Koppel, Moshe, Tsarfaty, Reut
Semitic morphologically-rich languages (MRLs) are characterized by extreme word ambiguity. Because most vowels are omitted in standard texts, many of the words are homographs with multiple possible analyses, each with a different pronunciation and different morphosyntactic properties. This ambiguity goes beyond word-sense disambiguation (WSD), and may include token segmentation into multiple word units. Previous research on MRLs claimed that standardly trained pre-trained language models (PLMs) based on word-pieces may not sufficiently capture the internal structure of such tokens in order to distinguish between these analyses. Taking Hebrew as a case study, we investigate the extent to which Hebrew homographs can be disambiguated and analyzed using PLMs. We evaluate all existing models for contextualized Hebrew embeddings on a novel Hebrew homograph challenge sets that we deliver. Our empirical results demonstrate that contemporary Hebrew contextualized embeddings outperform non-contextualized embeddings; and that they are most effective for disambiguating segmentation and morphosyntactic features, less so regarding pure word-sense disambiguation. We show that these embeddings are more effective when the number of word-piece splits is limited, and they are more effective for 2-way and 3-way ambiguities than for 4-way ambiguity. We show that the embeddings are equally effective for homographs of both balanced and skewed distributions, whether calculated as masked or unmasked tokens. Finally, we show that these embeddings are as effective for homograph disambiguation with extensive supervised training as with a few-shot setup.
LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements
Basmov, Victoria, Goldberg, Yoav, Tsarfaty, Reut
The task of reading comprehension (RC), often implemented as context-based question answering (QA), provides a primary means to assess language models' natural language understanding (NLU) capabilities. Yet, when applied to large language models (LLMs) with extensive built-in world knowledge, this method can be deceptive. If the context aligns with the LLMs' internal knowledge, it is hard to discern whether the models' answers stem from context comprehension or from LLMs' internal information. Conversely, using data that conflicts with the models' knowledge creates erroneous trends which distort the results. To address this issue, we suggest to use RC on imaginary data, based on fictitious facts and entities. This task is entirely independent of the models' world knowledge, enabling us to evaluate LLMs' linguistic abilities without the interference of parametric knowledge. Testing ChatGPT, GPT-4, LLaMA 2 and Mixtral on such imaginary data, we uncover a class of linguistic phenomena posing a challenge to current LLMs, involving thinking in terms of alternative, hypothetical scenarios. While all the models handle simple affirmative and negative contexts with high accuracy, they are much more prone to error when dealing with modal and conditional contexts. Crucially, these phenomena also trigger the LLMs' vulnerability to knowledge-conflicts again. In particular, while some models prove virtually unaffected by knowledge conflicts in affirmative and negative contexts, when faced with more semantically involved modal and conditional environments, they often fail to separate the text from their internal knowledge.
MRL Parsing Without Tears: The Case of Hebrew
Shmidman, Shaltiel, Shmidman, Avi, Koppel, Moshe, Tsarfaty, Reut
Syntactic parsing remains a critical tool for relation extraction and information extraction, especially in resource-scarce languages where LLMs are lacking. Yet in morphologically rich languages (MRLs), where parsers need to identify multiple lexical units in each token, existing systems suffer in latency and setup complexity. Some use a pipeline to peel away the layers: first segmentation, then morphology tagging, and then syntax parsing; however, errors in earlier layers are then propagated forward. Others use a joint architecture to evaluate all permutations at once; while this improves accuracy, it is notoriously slow. In contrast, and taking Hebrew as a test case, we present a new "flipped pipeline": decisions are made directly on the whole-token units by expert classifiers, each one dedicated to one specific task. The classifiers are independent of one another, and only at the end do we synthesize their predictions. This blazingly fast approach sets a new SOTA in Hebrew POS tagging and dependency parsing, while also reaching near-SOTA performance on other Hebrew NLP tasks. Because our architecture does not rely on any language-specific resources, it can serve as a model to develop similar parsers for other MRLs.
Breaking the Language Barrier: Can Direct Inference Outperform Pre-Translation in Multilingual LLM Applications?
Intrator, Yotam, Halfon, Matan, Goldenberg, Roman, Tsarfaty, Reut, Eyal, Matan, Rivlin, Ehud, Matias, Yossi, Aizenberg, Natalia
Large language models hold significant promise in multilingual applications. However, inherent biases stemming from predominantly English-centric pre-training have led to the widespread practice of pre-translation, i.e., translating non-English inputs to English before inference, leading to complexity and information loss. This study re-evaluates the need for pre-translation in the context of PaLM2 models (Anil et al., 2023), which have been established as highly performant in multilingual tasks. We offer a comprehensive investigation across 108 languages and 6 diverse benchmarks, including open-end generative tasks, which were excluded from previous similar studies. Our findings challenge the pre-translation paradigm established in prior research, highlighting the advantages of direct inference in PaLM2. Specifically, PaLM2-L consistently outperforms pre-translation in 94 out of 108 languages. These findings pave the way for more efficient and effective multilingual applications, alleviating the limitations associated with pre-translation and unlocking linguistic authenticity.