Goto

Collaborating Authors

 Trizna, Dmitrijs


SLIFER: Investigating Performance and Robustness of Malware Detection Pipelines

arXiv.org Artificial Intelligence

As a result of decades of research, Windows malware detection is approached through a plethora of techniques. However, there is an ongoing mismatch between academia -- which pursues an optimal performances in terms of detection rate and low false alarms -- and the requirements of real-world scenarios. In particular, academia focuses on combining static and dynamic analysis within a single or ensemble of models, falling into several pitfalls like (i) firing dynamic analysis without considering the computational burden it requires; (ii) discarding impossible-to-analyse samples; and (iii) analysing robustness against adversarial attacks without considering that malware detectors are complemented with more non-machine-learning components. Thus, in this paper we propose SLIFER, a novel Windows malware detection pipeline sequentially leveraging both static and dynamic analysis, interrupting computations as soon as one module triggers an alarm, requiring dynamic analysis only when needed. Contrary to the state of the art, we investigate how to deal with samples resistance to analysis, showing how much they impact performances, concluding that it is better to flag them as legitimate to not drastically increase false alarms. Lastly, we perform a robustness evaluation of SLIFER leveraging content-injections attacks, and we show that, counter-intuitively, attacks are blocked more by YARA rules than dynamic analysis due to byte artifacts created while optimizing the adversarial strategy.


Living-off-The-Land Reverse-Shell Detection by Informed Data Augmentation

arXiv.org Artificial Intelligence

The living-off-the-land (LOTL) offensive methodologies rely on the perpetration of malicious actions through chains of commands executed by legitimate applications, identifiable exclusively by analysis of system logs. LOTL techniques are well hidden inside the stream of events generated by common legitimate activities, moreover threat actors often camouflage activity through obfuscation, making them particularly difficult to detect without incurring in plenty of false alarms, even using machine learning. To improve the performance of models in such an harsh environment, we propose an augmentation framework to enhance and diversify the presence of LOTL malicious activity inside legitimate logs. Guided by threat intelligence, we generate a dataset by injecting attack templates known to be employed in the wild, further enriched by malleable patterns of legitimate activities to replicate the behavior of evasive threat actors. We conduct an extensive ablation study to understand which models better handle our augmented dataset, also manipulated to mimic the presence of model-agnostic evasion and poisoning attacks. Our results suggest that augmentation is needed to maintain high-predictive capabilities, robustness to attack is achieved through specific hardening techniques like adversarial training, and it is possible to deploy near-real-time models with almost-zero false alarms.


Nebula: Self-Attention for Dynamic Malware Analysis

arXiv.org Artificial Intelligence

Dynamic analysis enables detecting Windows malware by executing programs in a controlled environment, and storing their actions in log reports. Previous work has started training machine learning models on such reports to perform either malware detection or malware classification. However, most of the approaches (i) have only considered convolutional and long-short term memory networks, (ii) they have been built focusing only on APIs called at runtime, without considering other relevant though heterogeneous sources of information like network and file operations, and (iii) the code and pretrained models are hardly available, hindering reproducibility of results in this research area. In this work, we overcome these limitations by presenting Nebula, a versatile, self-attention transformer-based neural architecture that can generalize across different behavior representations and formats, combining heterogeneous information from dynamic log reports. We show the efficacy of Nebula on three distinct data collections from different dynamic analysis platforms, comparing its performance with previous state-of-the-art models developed for malware detection and classification tasks. We produce an extensive ablation study that showcases how the components of Nebula influence its predictive performance, while enabling it to outperform some competing approaches at very low false positive rates. We conclude our work by inspecting the behavior of Nebula through the application of explainability methods, which highlight that Nebula correctly focuses more on portions of reports that contain malicious activities. We release our code and models at github.com/dtrizna/nebula.