Goto

Collaborating Authors

 Tran-Dinh, Quoc


Variance-Reduced Fast Operator Splitting Methods for Stochastic Generalized Equations

arXiv.org Machine Learning

We develop two classes of variance-reduced fast operator splitting methods to approximate solutions of both finite-sum and stochastic generalized equations. Our approach integrates recent advances in accelerated fixed-point methods, co-hypomonotonicity, and variance reduction. First, we introduce a class of variance-reduced estimators and establish their variance-reduction bounds. This class covers both unbiased and biased instances and comprises common estimators as special cases, including SVRG, SAGA, SARAH, and Hybrid-SGD. Next, we design a novel accelerated variance-reduced forward-backward splitting (FBS) algorithm using these estimators to solve finite-sum and stochastic generalized equations. Our method achieves both $\mathcal{O}(1/k^2)$ and $o(1/k^2)$ convergence rates on the expected squared norm $\mathbb{E}[ \| G_{\lambda}x^k\|^2]$ of the FBS residual $G_{\lambda}$, where $k$ is the iteration counter. Additionally, we establish, for the first time, almost sure convergence rates and almost sure convergence of iterates to a solution in stochastic accelerated methods. Unlike existing stochastic fixed-point algorithms, our methods accommodate co-hypomonotone operators, which potentially include nonmonotone problems arising from recent applications. We further specify our method to derive an appropriate variant for each stochastic estimator -- SVRG, SAGA, SARAH, and Hybrid-SGD -- demonstrating that they achieve the best-known complexity for each without relying on enhancement techniques. Alternatively, we propose an accelerated variance-reduced backward-forward splitting (BFS) method, which attains similar convergence rates and oracle complexity as our FBS method. Finally, we validate our results through several numerical experiments and compare their performance.


Accelerated Extragradient-Type Methods -- Part 2: Generalization and Sublinear Convergence Rates under Co-Hypomonotonicity

arXiv.org Machine Learning

Following the first part of our project, this paper comprehensively studies two types of extragradient-based methods: anchored extragradient and Nesterov's accelerated extragradient for solving [non]linear inclusions (and, in particular, equations), primarily under the Lipschitz continuity and the co-hypomonotonicity assumptions. We unify and generalize a class of anchored extragradient methods for monotone inclusions to a wider range of schemes encompassing existing algorithms as special cases. We establish $\mathcal{O}(1/k)$ last-iterate convergence rates on the residual norm of the underlying mapping for this general framework and then specialize it to obtain convergence guarantees for specific instances, where $k$ denotes the iteration counter. We extend our approach to a class of anchored Tseng's forward-backward-forward splitting methods to obtain a broader class of algorithms for solving co-hypomonotone inclusions. Again, we analyze $\mathcal{O}(1/k)$ last-iterate convergence rates for this general scheme and specialize it to obtain convergence results for existing and new variants. We generalize and unify Nesterov's accelerated extra-gradient method to a new class of algorithms that covers existing schemes as special instances while generating new variants. For these schemes, we can prove $\mathcal{O}(1/k)$ last-iterate convergence rates for the residual norm under co-hypomonotonicity, covering a class of nonmonotone problems. We propose another novel class of Nesterov's accelerated extragradient methods to solve inclusions. Interestingly, these algorithms achieve both $\mathcal{O}(1/k)$ and $o(1/k)$ last-iterate convergence rates, and also the convergence of iterate sequences under co-hypomonotonicity and Lipschitz continuity. Finally, we provide a set of numerical experiments encompassing different scenarios to validate our algorithms and theoretical guarantees.


Shuffling Gradient-Based Methods for Nonconvex-Concave Minimax Optimization

arXiv.org Machine Learning

This paper aims at developing novel shuffling gradient-based methods for tackling two classes of minimax problems: nonconvex-linear and nonconvex-strongly concave settings. The first algorithm addresses the nonconvex-linear minimax model and achieves the state-of-the-art oracle complexity typically observed in nonconvex optimization. It also employs a new shuffling estimator for the "hyper-gradient", departing from standard shuffling techniques in optimization. The second method consists of two variants: semi-shuffling and full-shuffling schemes. These variants tackle the nonconvex-strongly concave minimax setting. We establish their oracle complexity bounds under standard assumptions, which, to our best knowledge, are the best-known for this specific setting. Numerical examples demonstrate the performance of our algorithms and compare them with two other methods. Our results show that the new methods achieve comparable performance with SGD, supporting the potential of incorporating shuffling strategies into minimax algorithms.


Revisiting Extragradient-Type Methods -- Part 1: Generalizations and Sublinear Convergence Rates

arXiv.org Machine Learning

This paper presents a comprehensive analysis of the well-known extragradient (EG) method for solving both equations and inclusions. First, we unify and generalize EG for [non]linear equations to a wider class of algorithms, encompassing various existing schemes and potentially new variants. Next, we analyze both sublinear ``best-iterate'' and ``last-iterate'' convergence rates for the entire class of algorithms, and derive new convergence results for two well-known instances. Second, we extend our EG framework above to ``monotone'' inclusions, introducing a new class of algorithms and its corresponding convergence results. Third, we also unify and generalize Tseng's forward-backward-forward splitting (FBFS) method to a broader class of algorithms to solve [non]linear inclusions when a weak-Minty solution exists, and establish its ``best-iterate'' convergence rate. Fourth, to complete our picture, we also investigate sublinear rates of two other common variants of EG using our EG analysis framework developed here: the reflected forward-backward splitting and the golden ratio methods. Finally, we conduct an extensive numerical experiment to validate our theoretical findings. Our results demonstrate that several new variants of our proposed algorithms outperform existing schemes in the majority of examples.


Accelerated Variance-Reduced Forward-Reflected Methods for Root-Finding Problems

arXiv.org Machine Learning

We propose a novel class of Nesterov's stochastic accelerated forward-reflected-based methods with variance reduction to solve root-finding problems under $\frac{1}{L}$-co-coerciveness. Our algorithm is single-loop and leverages a new family of unbiased variance-reduced estimators specifically designed for root-finding problems. It achieves both $\mathcal{O}(L^2/k^2)$ and $o(1/k^2)$-last-iterate convergence rates in terms of expected operator squared norm, where $k$ denotes the iteration counter. We instantiate our framework for two prominent estimators: SVRG and SAGA. By an appropriate choice of parameters, both variants attain an oracle complexity of $\mathcal{O}( n + Ln^{2/3}\epsilon^{-1})$ to reach an $\epsilon$-solution, where $n$ represents the number of summands in the finite-sum operator. Furthermore, under $\mu$-strong quasi-monotonicity, our method achieves a linear convergence rate and an oracle complexity of $\mathcal{O}(n+ \kappa n^{2/3}\log(\epsilon^{-1}))$, where $\kappa := \frac{L}{\mu}$. We extend our approach to solve a class of finite-sum monotone inclusions, demonstrating that our schemes retain the same theoretical guarantees as in the equation setting. Finally, numerical experiments validate our algorithms and demonstrate their promising performance compared to state-of-the-art methods.


Shuffling Momentum Gradient Algorithm for Convex Optimization

arXiv.org Artificial Intelligence

The Stochastic Gradient Descent method (SGD) and its stochastic variants have become methods of choice for solving finite-sum optimization problems arising from machine learning and data science thanks to their ability to handle large-scale applications and big datasets. In the last decades, researchers have made substantial effort to study the theoretical performance of SGD and its shuffling variants. However, only limited work has investigated its shuffling momentum variants, including shuffling heavy-ball momentum schemes for non-convex problems and Nesterov's momentum for convex settings. In this work, we extend the analysis of the shuffling momentum gradient method developed in [Tran et al (2021)] to both finite-sum convex and strongly convex optimization problems. We provide the first analysis of shuffling momentum-based methods for the strongly convex setting, attaining a convergence rate of $O(1/nT^2)$, where $n$ is the number of samples and $T$ is the number of training epochs. Our analysis is a state-of-the-art, matching the best rates of existing shuffling stochastic gradient algorithms in the literature.


Extragradient-Type Methods with $\mathcal{O} (1/k)$ Last-Iterate Convergence Rates for Co-Hypomonotone Inclusions

arXiv.org Machine Learning

We develop two "Nesterov's accelerated" variants of the well-known extragradient method to approximate a solution of a co-hypomonotone inclusion constituted by the sum of two operators, where one is Lipschitz continuous and the other is possibly multivalued. The first scheme can be viewed as an accelerated variant of Tseng's forward-backward-forward splitting (FBFS) method, while the second one is a Nesterov's accelerated variant of the "past" FBFS scheme, which requires only one evaluation of the Lipschitz operator and one resolvent of the multivalued mapping. Under appropriate conditions on the parameters, we theoretically prove that both algorithms achieve $\mathcal{O}(1/k)$ last-iterate convergence rates on the residual norm, where $k$ is the iteration counter. Our results can be viewed as alternatives of a recent class of Halpern-type methods for root-finding problems. For comparison, we also provide a new convergence analysis of the two recent extra-anchored gradient-type methods for solving co-hypomonotone inclusions.


Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems

arXiv.org Machine Learning

In this paper, we develop two new randomized block-coordinate optimistic gradient algorithms to approximate a solution of nonlinear equations in large-scale settings, which are called root-finding problems. Our first algorithm is non-accelerated with constant stepsizes, and achieves $\mathcal{O}(1/k)$ best-iterate convergence rate on $\mathbb{E}[ \Vert Gx^k\Vert^2]$ when the underlying operator $G$ is Lipschitz continuous and satisfies a weak Minty solution condition, where $\mathbb{E}[\cdot]$ is the expectation and $k$ is the iteration counter. Our second method is a new accelerated randomized block-coordinate optimistic gradient algorithm. We establish both $\mathcal{O}(1/k^2)$ and $o(1/k^2)$ last-iterate convergence rates on both $\mathbb{E}[ \Vert Gx^k\Vert^2]$ and $\mathbb{E}[ \Vert x^{k+1} - x^{k}\Vert^2]$ for this algorithm under the co-coerciveness of $G$. In addition, we prove that the iterate sequence $\{x^k\}$ converges to a solution almost surely, and $\Vert Gx^k\Vert^2$ attains a $o(1/k)$ almost sure convergence rate. Then, we apply our methods to a class of large-scale finite-sum inclusions, which covers prominent applications in machine learning, statistical learning, and network optimization, especially in federated learning. We obtain two new federated learning-type algorithms and their convergence rate guarantees for solving this problem class.


Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on Classical and Recent Developments

arXiv.org Machine Learning

The generalized equation (also called the [non]linear inclusion) provides a unified template to model various problems in computational mathematics and related fields su ch as the optimality condition of optimization problems (in both unconstrained and constrained settings), minimax optimization, variational inequality, complementarity, two-person game, and fixed-point problem s, see, e.g., [11, 24, 50, 112, 116, 118, 120]. Theory and numerical methods for this equation and its special case s have been extensively studied for many decades, see, e.g., the following monographs and the references quot ed therein [11, 50, 94, 119]. At the same time, several applications of this mathematical tool in operatio ns research, economics, uncertainty quantification, and transportations have been investigated [14, 52, 61, 50, 72]. In the last few years, there has been a surge of research in minimax problems due to new applications in mach ine learning and robust optimization, especially in generative adversarial networks (GANs), adversarial tr aining, and distributionally robust optimization, see, e.g., [4, 14, 55, 76, 84, 114] as a few examples. Minimax probl ems have also found new applications in online learning and reinforcement learning, among many others, se e, e.g., [4, 9, 15, 55, 67, 76, 78, 84, 114, 139]. Such prominent applications have motivated the research in minimax optimization and variational inequality problems (VIPs). On the one hand, classical algorithms such as gradient descent-ascent, extragradient, and primal-dual methods have been revisited, improved, and ext ended. On the other hand, new variants such as accelerated extragradient and accelerated operator split ting schemes have also been developed and equipped with rigorous convergence guarantees and practical perfor mance evaluation. This new development motivates us to write this survey paper, with the focus on sublinear con vergence rate analysis.


Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis

arXiv.org Machine Learning

In this book chapter, we briefly describe the main components that constitute the gradient descent method and its accelerated and stochastic variants. We aim at explaining these components from a mathematical point of view, including theoretical and practical aspects, but at an elementary level. We will focus on basic variants of the gradient descent method and then extend our view to recent variants, especially variance-reduced stochastic gradient schemes (SGD). Our approach relies on revealing the structures presented inside the problem and the assumptions imposed on the objective function. Our convergence analysis unifies several known results and relies on a general, but elementary recursive expression. We have illustrated this analysis on several common schemes.