Goto

Collaborating Authors

 Tran, Quyen


Few-Shot, No Problem: Descriptive Continual Relation Extraction

arXiv.org Artificial Intelligence

Few-shot Continual Relation Extraction is a crucial challenge for enabling AI systems to identify and adapt to evolving relationships in dynamic real-world domains. Traditional memory-based approaches often overfit to limited samples, failing to reinforce old knowledge, with the scarcity of data in few-shot scenarios further exacerbating these issues by hindering effective data augmentation in the latent space. In this paper, we propose a novel retrieval-based solution, starting with a large language model to generate descriptions for each relation. From these descriptions, we introduce a bi-encoder retrieval training paradigm to enrich both sample and class representation learning. Leveraging these enhanced representations, we design a retrieval-based prediction method where each sample "retrieves" the best fitting relation via a reciprocal rank fusion score that integrates both relation description vectors and class prototypes. Extensive experiments on multiple datasets demonstrate that our method significantly advances the state-of-the-art by maintaining robust performance across sequential tasks, effectively addressing catastrophic forgetting.


Few-shot Continual Relation Extraction via Open Information Extraction

arXiv.org Artificial Intelligence

Typically, Few-shot Continual Relation Extraction (FCRE) models must balance retaining prior knowledge while adapting to new tasks with extremely limited data. However, real-world scenarios may also involve unseen or undetermined relations that existing methods still struggle to handle. To address these challenges, we propose a novel approach that leverages the Open Information Extraction concept of Knowledge Graph Construction (KGC). Our method not only exposes models to all possible pairs of relations, including determined and undetermined labels not available in the training set, but also enriches model knowledge with diverse relation descriptions, thereby enhancing knowledge retention and adaptability in this challenging scenario. In the perspective of KGC, this is the first work explored in the setting of Continual Learning, allowing efficient expansion of the graph as the data evolves. Experimental results demonstrate our superior performance compared to other state-of-the-art FCRE baselines, as well as the efficiency in handling dynamic graph construction in this setting.


Leveraging Hierarchical Taxonomies in Prompt-based Continual Learning

arXiv.org Artificial Intelligence

Drawing inspiration from human learning behaviors, this work proposes a novel approach to mitigate catastrophic forgetting in Prompt-based Continual Learning models by exploiting the relationships between continuously emerging class data. We find that applying human habits of organizing and connecting information can serve as an efficient strategy when training deep learning models. Specifically, by building a hierarchical tree structure based on the expanding set of labels, we gain fresh insights into the data, identifying groups of similar classes could easily cause confusion. Additionally, we delve deeper into the hidden connections between classes by exploring the original pretrained model's behavior through an optimal transport-based approach. From these insights, we propose a novel regularization loss function that encourages models to focus more on challenging knowledge areas, thereby enhancing overall performance. Experimentally, our method demonstrated significant superiority over the most robust state-of-the-art models on various benchmarks.


Lifelong Event Detection via Optimal Transport

arXiv.org Artificial Intelligence

Continual Event Detection (CED) poses a formidable challenge due to the catastrophic forgetting phenomenon, where learning new tasks (with new coming event types) hampers performance on previous ones. In this paper, we introduce a novel approach, Lifelong Event Detection via Optimal Transport (LEDOT), that leverages optimal transport principles to align the optimization of our classification module with the intrinsic nature of each class, as defined by their pre-trained language modeling. Our method integrates replay sets, prototype latent representations, and an innovative Optimal Transport component. Extensive experiments on MAVEN and ACE datasets demonstrate LEDOT's superior performance, consistently outperforming state-of-the-art baselines. The results underscore LEDOT as a pioneering solution in continual event detection, offering a more effective and nuanced approach to addressing catastrophic forgetting in evolving environments.


Improving Generalization with Flat Hilbert Bayesian Inference

arXiv.org Machine Learning

We introduce Flat Hilbert Bayesian Inference (FHBI), an algorithm designed to enhance generalization in Bayesian inference. Our approach involves an iterative two-step procedure with an adversarial functional perturbation step and a functional descent step within the reproducing kernel Hilbert spaces. This methodology is supported by a theoretical analysis that extends previous findings on generalization ability from finite-dimensional Euclidean spaces to infinite-dimensional functional spaces. To evaluate the effectiveness of FHBI, we conduct comprehensive comparisons against seven baseline methods on the VTAB-1K benchmark, which encompasses 19 diverse datasets across various domains with diverse semantics. Empirical results demonstrate that FHBI consistently outperforms the baselines by notable margins, highlighting its practical efficacy. Our code is available at https://anonymous.4open.science/


Revisiting Prefix-tuning: Statistical Benefits of Reparameterization among Prompts

arXiv.org Artificial Intelligence

Prompt-based techniques, such as prompt-tuning and prefix-tuning, have gained prominence for their efficiency in fine-tuning large pre-trained models. Despite their widespread adoption, the theoretical foundations of these methods remain limited. For instance, in prefix-tuning, we observe that a key factor in achieving performance parity with full fine-tuning lies in the reparameterization strategy. However, the theoretical principles underpinning the effectiveness of this approach have yet to be thoroughly examined. Our study demonstrates that reparameterization is not merely an engineering trick but is grounded in deep theoretical foundations. Specifically, we show that the reparameterization strategy implicitly encodes a shared structure between prefix key and value vectors. Building on recent insights into the connection between prefix-tuning and mixture of experts models, we further illustrate that this shared structure significantly improves sample efficiency in parameter estimation compared to non-shared alternatives. The effectiveness of prefix-tuning across diverse tasks is empirically confirmed to be enhanced by the shared structure, through extensive experiments in both visual and language domains. Additionally, we uncover similar structural benefits in prompt-tuning, offering new perspectives on its success. Our findings provide theoretical and empirical contributions, advancing the understanding of prompt-based methods and their underlying mechanisms.


Preserving Generalization of Language models in Few-shot Continual Relation Extraction

arXiv.org Artificial Intelligence

Few-shot Continual Relations Extraction (FCRE) is an emerging and dynamic area of study where models can sequentially integrate knowledge from new relations with limited labeled data while circumventing catastrophic forgetting and preserving prior knowledge from pre-trained backbones. In this work, we introduce a novel method that leverages often-discarded language model heads. By employing these components via a mutual information maximization strategy, our approach helps maintain prior knowledge from the pre-trained backbone and strategically aligns the primary classification head, thereby enhancing model performance. Furthermore, we explore the potential of Large Language Models (LLMs), renowned for their wealth of knowledge, in addressing FCRE challenges. Our comprehensive experimental results underscore the efficacy of the proposed method and offer valuable insights for future work.


Agnostic Sharpness-Aware Minimization

arXiv.org Artificial Intelligence

Sharpness-aware minimization (SAM) has been instrumental in improving deep neural network training by minimizing both the training loss and the sharpness of the loss landscape, leading the model into flatter minima that are associated with better generalization properties. In another aspect, Model-Agnostic Meta-Learning (MAML) is a framework designed to improve the adaptability of models. MAML optimizes a set of meta-models that are specifically tailored for quick adaptation to multiple tasks with minimal fine-tuning steps and can generalize well with limited data. In this work, we explore the connection between SAM and MAML, particularly in terms of enhancing model generalization. We introduce Agnostic-SAM, a novel approach that combines the principles of both SAM and MAML. Agnostic-SAM adapts the core idea of SAM by optimizing the model towards wider local minima using training data, while concurrently maintaining low loss values on validation data. By doing so, it seeks flatter minima that are not only robust to small perturbations but also less vulnerable to data distributional shift problems. Our experimental results demonstrate that Agnostic-SAM significantly improves generalization over baselines across a range of datasets and under challenging conditions such as noisy labels and data limitation.


Class-Prototype Conditional Diffusion Model for Continual Learning with Generative Replay

arXiv.org Artificial Intelligence

Mitigating catastrophic forgetting is a key hurdle in continual learning. Deep Generative Replay (GR) provides techniques focused on generating samples from prior tasks to enhance the model's memory capabilities. With the progression in generative AI, generative models have advanced from Generative Adversarial Networks (GANs) to the more recent Diffusion Models (DMs). A major issue is the deterioration in the quality of generated data compared to the original, as the generator continuously self-learns from its outputs. This degradation can lead to the potential risk of catastrophic forgetting occurring in the classifier. To address this, we propose the Class-Prototype Conditional Diffusion Model (CPDM), a GR-based approach for continual learning that enhances image quality in generators and thus reduces catastrophic forgetting in classifiers. The cornerstone of CPDM is a learnable class-prototype that captures the core characteristics of images in a given class. This prototype, integrated into the diffusion model's denoising process, ensures the generation of high-quality images. It maintains its effectiveness for old tasks even when new tasks are introduced, preserving image generation quality and reducing the risk of catastrophic forgetting in classifiers. Our empirical studies on diverse datasets demonstrate that our proposed method significantly outperforms existing state-of-the-art models, highlighting its exceptional ability to preserve image quality and enhance the model's memory retention.


KOPPA: Improving Prompt-based Continual Learning with Key-Query Orthogonal Projection and Prototype-based One-Versus-All

arXiv.org Artificial Intelligence

Drawing inspiration from prompt tuning techniques applied to Large Language Models, recent methods based on pre-trained ViT networks have achieved remarkable results in the field of Continual Learning. Specifically, these approaches propose to maintain a set of prompts and allocate a subset of them to learn each task using a key-query matching strategy. However, they may encounter limitations when lacking control over the correlations between old task queries and keys of future tasks, the shift of features in the latent space, and the relative separation of latent vectors learned in independent tasks. In this work, we introduce a novel key-query learning strategy based on orthogonal projection, inspired by model-agnostic meta-learning, to enhance prompt matching efficiency and address the challenge of shifting features. Furthermore, we introduce a One-Versus-All (OVA) prototype-based component that enhances the classification head distinction. Experimental results on benchmark datasets demonstrate that our method empowers the model to achieve results surpassing those of current state-of-the-art approaches by a large margin of up to 20%. Our code is available at https://anonymous.4open.science/r/KOPPA/README.md. Continual Learning (CL) is an evolving field in machine learning, aiming to enable models to learn continuously from a sequence of tasks with varying data distributions. A challenging CL scenario is Class Incremental Learning (CIL), where a model sequentially learns new categories and must classify all seen classes without task-ID information, leading to a fundamental issue in CL known as Catastrophic Forgetting (CF) (French, 1999), where performance on earlier tasks degrades due to the absence of old task data and differences in data distributions. In CIL, models are required to classify test samples without prior knowledge of their task IDs.