Tomasetto, Matteo
Reduced Order Modeling with Shallow Recurrent Decoder Networks
Tomasetto, Matteo, Williams, Jan P., Braghin, Francesco, Manzoni, Andrea, Kutz, J. Nathan
Reduced Order Modeling is of paramount importance for efficiently inferring high-dimensional spatio-temporal fields in parametric contexts, enabling computationally tractable parametric analyses, uncertainty quantification and control. However, conventional dimensionality reduction techniques are typically limited to known and constant parameters, inefficient for nonlinear and chaotic dynamics, and uninformed to the actual system behavior. In this work, we propose sensor-driven SHallow REcurrent Decoder networks for Reduced Order Modeling (SHRED-ROM). Specifically, we consider the composition of a long short-term memory network, which encodes the temporal dynamics of limited sensor data in multiple scenarios, and a shallow decoder, which reconstructs the corresponding high-dimensional states. SHRED-ROM is a robust decoding-only strategy that circumvents the numerically unstable approximation of an inverse which is required by encoding-decoding schemes. To enhance computational efficiency and memory usage, the full-order state snapshots are reduced by, e.g., proper orthogonal decomposition, allowing for compressive training of the networks with minimal hyperparameter tuning. Through applications on chaotic and nonlinear fluid dynamics, we show that SHRED-ROM (i) accurately reconstructs the state dynamics for new parameter values starting from limited fixed or mobile sensors, independently on sensor placement, (ii) can cope with both physical, geometrical and time-dependent parametric dependencies, while being agnostic to their actual values, (iii) can accurately estimate unknown parameters, and (iv) can deal with different data sources, such as high-fidelity simulations, coupled fields and videos.
Latent feedback control of distributed systems in multiple scenarios through deep learning-based reduced order models
Tomasetto, Matteo, Braghin, Francesco, Manzoni, Andrea
Continuous monitoring and real-time control of high-dimensional distributed systems are often crucial in applications to ensure a desired physical behavior, without degrading stability and system performances. Traditional feedback control design that relies on full-order models, such as high-dimensional state-space representations or partial differential equations, fails to meet these requirements due to the delay in the control computation, which requires multiple expensive simulations of the physical system. The computational bottleneck is even more severe when considering parametrized systems, as new strategies have to be determined for every new scenario. To address these challenges, we propose a real-time closed-loop control strategy enhanced by nonlinear non-intrusive Deep Learning-based Reduced Order Models (DL-ROMs). Specifically, in the offline phase, (i) full-order state-control pairs are generated for different scenarios through the adjoint method, (ii) the essential features relevant for control design are extracted from the snapshots through a combination of Proper Orthogonal Decomposition (POD) and deep autoencoders, and (iii) the low-dimensional policy bridging latent control and state spaces is approximated with a feedforward neural network. After data generation and neural networks training, the optimal control actions are retrieved in real-time for any observed state and scenario. In addition, the dynamics may be approximated through a cheap surrogate model in order to close the loop at the latent level, thus continuously controlling the system in real-time even when full-order state measurements are missing. The effectiveness of the proposed method, in terms of computational speed, accuracy, and robustness against noisy data, is finally assessed on two different high-dimensional optimal transport problems, one of which also involving an underlying fluid flow.