Plotting

 Tokekar, Pratap


A Survey of Decision-Theoretic Approaches for Robotic Environmental Monitoring

arXiv.org Artificial Intelligence

Robotics has dramatically increased our ability to gather data about our environments, creating an opportunity for the robotics and algorithms communities to collaborate on novel solutions to environmental monitoring problems. To understand a taxonomy of problems and methods in this realm, we present the first comprehensive survey of decision-theoretic approaches that enable efficient sampling of various environmental processes. We investigate representations for different environments, followed by a discussion of using these presentations to solve tasks of interest, such as learning, localization, and monitoring. To efficiently implement the tasks, decision-theoretic optimization algorithms consider: (1) where to take measurements from, (2) which tasks to be assigned, (3) what samples to collect, (4) when to collect samples, (5) how to learn environment; and (6) who to communicate. Finally, we summarize our study and present the challenges and opportunities in robotic environmental monitoring.


AG-CVG: Coverage Planning with a Mobile Recharging UGV and an Energy-Constrained UAV

arXiv.org Artificial Intelligence

In this paper, we present an approach for coverage path planning for a team of an energy-constrained Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV). Both the UAV and the UGV have predefined areas that they have to cover. The goal is to perform complete coverage by both robots while minimizing the coverage time. The UGV can also serve as a mobile recharging station. The UAV and UGV need to occasionally rendezvous for recharging. We propose a heuristic method to address this NP-Hard planning problem. Our approach involves initially determining coverage paths without factoring in energy constraints. Subsequently, we cluster segments of these paths and employ graph matching to assign UAV clusters to UGV clusters for efficient recharging management. We perform numerical analysis on real-world coverage applications and show that compared with a greedy approach our method reduces rendezvous overhead on average by 11.33\%. We demonstrate proof-of-concept with a team of a VOXL m500 drone and a Clearpath Jackal ground vehicle, providing a complete system from the offline algorithm to the field execution.


Fast Biconnectivity Restoration in Multi-Robot Systems for Robust Communication Maintenance

arXiv.org Artificial Intelligence

Maintaining a robust communication network plays an important role in the success of a multi-robot team jointly performing an optimization task. A key characteristic of a robust multi-robot system is the ability to repair the communication topology itself in the case of robot failure. In this paper, we focus on the Fast Biconnectivity Restoration (FBR) problem, which aims to repair a connected network to make it biconnected as fast as possible, where a biconnected network is a communication topology that cannot be disconnected by removing one node. We develop a Quadratically Constrained Program (QCP) formulation of the FBR problem, which provides a way to optimally solve the problem. We also propose an approximation algorithm for the FBR problem based on graph theory. By conducting empirical studies, we demonstrate that our proposed approximation algorithm performs close to the optimal while significantly outperforming the existing solutions.


D2M2N: Decentralized Differentiable Memory-Enabled Mapping and Navigation for Multiple Robots

arXiv.org Artificial Intelligence

Recently, a number of learning-based models have been proposed for multi-robot navigation. However, these models lack memory and only rely on the current observations of the robot to plan their actions. They are unable to leverage past observations to plan better paths, especially in complex environments. In this work, we propose a fully differentiable and decentralized memory-enabled architecture for multi-robot navigation and mapping called D2M2N. D2M2N maintains a compact representation of the environment to remember past observations and uses Value Iteration Network for complex navigation. We conduct extensive experiments to show that D2M2N significantly outperforms the state-of-the-art model in complex mapping and navigation task.


Pre-Trained Masked Image Model for Mobile Robot Navigation

arXiv.org Artificial Intelligence

2D top-down maps are commonly used for the navigation and exploration of mobile robots through unknown areas. Typically, the robot builds the navigation maps incrementally from local observations using onboard sensors. Recent works have shown that predicting the structural patterns in the environment through learning-based approaches can greatly enhance task efficiency. While many such works build task-specific networks using limited datasets, we show that the existing foundational vision networks can accomplish the same without any fine-tuning. Specifically, we use Masked Autoencoders, pre-trained on street images, to present novel applications for field-of-view expansion, single-agent topological exploration, and multi-agent exploration for indoor mapping, across different input modalities. Our work motivates the use of foundational vision models for generalized structure prediction-driven applications, especially in the dearth of training data. For more qualitative results see https://raaslab.org/projects/MIM4Robots.


Decision-Oriented Intervention Cost Prediction for Multi-robot Persistent Monitoring

arXiv.org Artificial Intelligence

In this paper, we present a differentiable, decision-oriented learning technique for a class of vehicle routing problems. Specifically, we consider a scenario where a team of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) are persistently monitoring an environment. The UGVs are occasionally taken over by humans to take detours to recharge the depleted UAVs. The goal is to select routes for the UGVs so that they can efficiently monitor the environment while reducing the cost of interventions. The former is modeled as a monotone, submodular function whereas the latter is a linear function of the routes of the UGVs. We consider a scenario where the former is known but the latter depends on the context (e.g., wind and terrain conditions) that must be learned. Typically, we first learn to predict the cost function and then solve the optimization problem. However, the loss function used in prediction may be misaligned with our final goal of finding good routes. We propose a \emph{decision-oriented learning} framework that incorporates task optimization as a differentiable layer in the prediction phase. To make the task optimization (which is a non-monotone submodular function) differentiable, we propose the Differentiable Cost Scaled Greedy algorithm. We demonstrate the efficacy of the proposed framework through numerical simulations. The results show that the proposed framework can result in better performance than the traditional approach.


Energy-Aware Route Planning for a Battery-Constrained Robot with Multiple Charging Depots

arXiv.org Artificial Intelligence

This paper considers energy-aware route planning for a battery-constrained robot operating in environments with multiple recharging depots. The robot has a battery discharge time $D$, and it should visit the recharging depots at most every $D$ time units to not run out of charge. The objective is to minimize robot's travel time while ensuring it visits all task locations in the environment. We present a $O(\log D)$ approximation algorithm for this problem. We also present heuristic improvements to the approximation algorithm and assess its performance on instances from TSPLIB, comparing it to an optimal solution obtained through Integer Linear Programming (ILP). The simulation results demonstrate that, despite a more than $20$-fold reduction in runtime, the proposed algorithm provides solutions that are, on average, within $31\%$ of the ILP solution.


LANCAR: Leveraging Language for Context-Aware Robot Locomotion in Unstructured Environments

arXiv.org Artificial Intelligence

Robotic locomotion is a challenging task, especially in unstructured terrains. In practice, the optimal locomotion policy can be context-dependent by using the contextual information of encountered terrains in decision-making. Humans can interpret the environmental context for robots, but the ambiguity of human language makes it challenging to use in robot locomotion directly. In this paper, we propose a novel approach, LANCAR, that introduces a context translator that works with reinforcement learning (RL) agents for context-aware locomotion. Our formulation allows a robot to interpret the contextual information from environments generated by human observers or Vision-Language Models (VLM) with Large Language Models (LLM) and use this information to generate contextual embeddings. We incorporate the contextual embeddings with the robot's internal environmental observations as the input to the RL agent's decision neural network. We evaluate LANCAR with contextual information in varying ambiguity levels and compare its performance using several alternative approaches. Our experimental results demonstrate that our approach exhibits good generalizability and adaptability across diverse terrains, by achieving at least 10% of performance improvement in episodic reward over baselines. The experiment video can be found at the following link: https://raaslab.org/projects/LLM_Context_Estimation/.


Where Am I Now? Dynamically Finding Optimal Sensor States to Minimize Localization Uncertainty for a Perception-Denied Rover

arXiv.org Artificial Intelligence

We present DyFOS, an active perception method that dynamically finds optimal states to minimize localization uncertainty while avoiding obstacles and occlusions. We consider the scenario where a perception-denied rover relies on position and uncertainty measurements from a viewer robot to localize itself along an obstacle-filled path. The position uncertainty from the viewer's sensor is a function of the states of the sensor itself, the rover, and the surrounding environment. To find an optimal sensor state that minimizes the rover's localization uncertainty, DyFOS uses a localization uncertainty prediction pipeline in an optimization search. Given numerous samples of the states mentioned above, the pipeline predicts the rover's localization uncertainty with the help of a trained, complex state-dependent sensor measurement model (a probabilistic neural network). Our pipeline also predicts occlusion and obstacle collision to remove undesirable viewer states and reduce unnecessary computations. We evaluate the proposed method numerically and in simulation. Our results show that DyFOS is faster than brute force yet performs on par. DyFOS also yielded lower localization uncertainties than faster random and heuristic-based searches.


Decision-Oriented Learning with Differentiable Submodular Maximization for Vehicle Routing Problem

arXiv.org Artificial Intelligence

We study the problem of learning a function that maps context observations (input) to parameters of a submodular function (output). Our motivating case study is a specific type of vehicle routing problem, in which a team of Unmanned Ground Vehicles (UGVs) can serve as mobile charging stations to recharge a team of Unmanned Ground Vehicles (UAVs) that execute persistent monitoring tasks. {We want to learn the mapping from observations of UAV task routes and wind field to the parameters of a submodular objective function, which describes the distribution of landing positions of the UAVs .} Traditionally, such a learning problem is solved independently as a prediction phase without considering the downstream task optimization phase. However, the loss function used in prediction may be misaligned with our final goal, i.e., a good routing decision. Good performance in the isolated prediction phase does not necessarily lead to good decisions in the downstream routing task. In this paper, we propose a framework that incorporates task optimization as a differentiable layer in the prediction phase. Our framework allows end-to-end training of the prediction model without using engineered intermediate loss that is targeted only at the prediction performance. In the proposed framework, task optimization (submodular maximization) is made differentiable by introducing stochastic perturbations into deterministic algorithms (i.e., stochastic smoothing). We demonstrate the efficacy of the proposed framework using synthetic data. Experimental results of the mobile charging station routing problem show that the proposed framework can result in better routing decisions, e.g. the average number of UAVs recharged increases, compared to the prediction-optimization separate approach.