Goto

Collaborating Authors

 Tilbury, Callum Rhys


Opportunities of Reinforcement Learning in South Africa's Just Transition

arXiv.org Artificial Intelligence

South Africa stands at a crucial juncture, grappling with interwoven socio-economic challenges such as poverty, inequality, unemployment, and the looming climate crisis. The government's Just Transition framework aims to enhance climate resilience, achieve net-zero greenhouse gas emissions by 2050, and promote social inclusion and poverty eradication. According to the Presidential Commission on the Fourth Industrial Revolution, artificial intelligence technologies offer significant promise in addressing these challenges. This paper explores the overlooked potential of Reinforcement Learning (RL) in supporting South Africa's Just Transition. It examines how RL can enhance agriculture and land-use practices, manage complex, decentralised energy networks, and optimise transportation and logistics, thereby playing a critical role in achieving a just and equitable transition to a low-carbon future for all South Africans. We provide a roadmap as to how other researchers in the field may be able to contribute to these pressing problems.


Coordination Failure in Cooperative Offline MARL

arXiv.org Artificial Intelligence

Offline multi-agent reinforcement learning (MARL) leverages static datasets of experience to learn optimal multi-agent control. However, learning from static data presents several unique challenges to overcome. In this paper, we focus on coordination failure and investigate the role of joint actions in multi-agent policy gradients with offline data, focusing on a common setting we refer to as the 'Best Response Under Data' (BRUD) approach. By using two-player polynomial games as an analytical tool, we demonstrate a simple yet overlooked failure mode of BRUD-based algorithms, which can lead to catastrophic coordination failure in the offline setting. Building on these insights, we propose an approach to mitigate such failure, by prioritising samples from the dataset based on joint-action similarity during policy learning and demonstrate its effectiveness in detailed experiments. More generally, however, we argue that prioritised dataset sampling is a promising area for innovation in offline MARL that can be combined with other effective approaches such as critic and policy regularisation. Importantly, our work shows how insights drawn from simplified, tractable games can lead to useful, theoretically grounded insights that transfer to more complex contexts. A core dimension of offering is an interactive notebook, from which almost all of our results can be reproduced, in a browser.


Dispelling the Mirage of Progress in Offline MARL through Standardised Baselines and Evaluation

arXiv.org Artificial Intelligence

Offline multi-agent reinforcement learning (MARL) is an emerging field with great promise for real-world applications. Unfortunately, the current state of research in offline MARL is plagued by inconsistencies in baselines and evaluation protocols, which ultimately makes it difficult to accurately assess progress, trust newly proposed innovations, and allow researchers to easily build upon prior work. In this paper, we firstly identify significant shortcomings in existing methodologies for measuring the performance of novel algorithms through a representative study of published offline MARL work. Secondly, by directly comparing to this prior work, we demonstrate that simple, well-implemented baselines can achieve state-of-the-art (SOTA) results across a wide range of tasks. Specifically, we show that on 35 out of 47 datasets used in prior work (almost 75% of cases), we match or surpass the performance of the current purported SOTA. Strikingly, our baselines often substantially outperform these more sophisticated algorithms. Finally, we correct for the shortcomings highlighted from this prior work by introducing a straightforward standardised methodology for evaluation and by providing our baseline implementations with statistically robust results across several scenarios, useful for comparisons in future work. Our proposal includes simple and sensible steps that are easy to adopt, which in combination with solid baselines and comparative results, could substantially improve the overall rigour of empirical science in offline MARL moving forward.


Mava: a research library for distributed multi-agent reinforcement learning in JAX

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) research is inherently computationally expensive and it is often difficult to obtain a sufficient number of experiment samples to test hypotheses and make robust statistical claims. Furthermore, MARL algorithms are typically complex in their design and can be tricky to implement correctly. These aspects of MARL present a difficult challenge when it comes to creating useful software for advanced research. Our criteria for such software is that it should be simple enough to use to implement new ideas quickly, while at the same time be scalable and fast enough to test those ideas in a reasonable amount of time. In this preliminary technical report, we introduce Mava, a research library for MARL written purely in JAX, that aims to fulfill these criteria. We discuss the design and core features of Mava, and demonstrate its use and performance across a variety of environments. In particular, we show Mava's substantial speed advantage, with improvements of 10-100x compared to other popular MARL frameworks, while maintaining strong performance. This allows for researchers to test ideas in a few minutes instead of several hours. Finally, Mava forms part of an ecosystem of libraries that seamlessly integrate with each other to help facilitate advanced research in MARL. We hope Mava will benefit the community and help drive scientifically sound and statistically robust research in the field. The open-source repository for Mava is available at https://github.com/instadeepai/Mava.


Generalisable Agents for Neural Network Optimisation

arXiv.org Artificial Intelligence

Optimising deep neural networks is a challenging task due to complex training dynamics, high computational requirements, and long training times. To address this difficulty, we propose the framework of Generalisable Agents for Neural Network Optimisation (GANNO) -- a multi-agent reinforcement learning (MARL) approach that learns to improve neural network optimisation by dynamically and responsively scheduling hyperparameters during training. GANNO utilises an agent per layer that observes localised network dynamics and accordingly takes actions to adjust these dynamics at a layerwise level to collectively improve global performance. In this paper, we use GANNO to control the layerwise learning rate and show that the framework can yield useful and responsive schedules that are competitive with handcrafted heuristics. Furthermore, GANNO is shown to perform robustly across a wide variety of unseen initial conditions, and can successfully generalise to harder problems than it was trained on. Our work presents an overview of the opportunities that this paradigm offers for training neural networks, along with key challenges that remain to be overcome.


Revisiting the Gumbel-Softmax in MADDPG

arXiv.org Artificial Intelligence

MADDPG is an algorithm in multi-agent reinforcement learning (MARL) that extends the popular single-agent method, DDPG, to multi-agent scenarios. Importantly, DDPG is an algorithm designed for continuous action spaces, where the gradient of the state-action value function exists. For this algorithm to work in discrete action spaces, discrete gradient estimation must be performed. For MADDPG, the Gumbel-Softmax (GS) estimator is used -- a reparameterisation which relaxes a discrete distribution into a similar continuous one. This method, however, is statistically biased, and a recent MARL benchmarking paper suggests that this bias makes MADDPG perform poorly in grid-world situations, where the action space is discrete. Fortunately, many alternatives to the GS exist, boasting a wide range of properties. This paper explores several of these alternatives and integrates them into MADDPG for discrete grid-world scenarios. The corresponding impact on various performance metrics is then measured and analysed. It is found that one of the proposed estimators performs significantly better than the original GS in several tasks, achieving up to 55% higher returns, along with faster convergence.


Reduce, Reuse, Recycle: Selective Reincarnation in Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

'Reincarnation' in reinforcement learning has been proposed as a formalisation of reusing prior computation from past experiments when training an agent in an environment. In this paper, we present a brief foray into the paradigm of reincarnation in the multi-agent (MA) context. We consider the case where only some agents are reincarnated, whereas the others are trained from scratch -- selective reincarnation. In the fully-cooperative MA setting with heterogeneous agents, we demonstrate that selective reincarnation can lead to higher returns than training fully from scratch, and faster convergence than training with full reincarnation. However, the choice of which agents to reincarnate in a heterogeneous system is vitally important to the outcome of the training -- in fact, a poor choice can lead to considerably worse results than the alternatives. We argue that a rich field of work exists here, and we hope that our effort catalyses further energy in bringing the topic of reincarnation to the multi-agent realm.


BaIT: Barometer for Information Trustworthiness

arXiv.org Artificial Intelligence

This paper presents a new approach to the FNC-1 fake news classification task which involves employing pre-trained encoder models from similar NLP tasks, namely sentence similarity and natural language inference, and two neural network architectures using this approach are proposed. Methods in data augmentation are explored as a means of tackling class imbalance in the dataset, employing common pre-existing methods and proposing a method for sample generation in the under-represented class using a novel sentence negation algorithm. Comparable overall performance with existing baselines is achieved, while significantly increasing accuracy on an under-represented but nonetheless important class for FNC-1.


Reinforcement Learning for Economic Policy: A New Frontier?

arXiv.org Artificial Intelligence

Agent-based computational economics is a field with a rich academic history, yet one which has struggled to enter mainstream policy design toolboxes--plagued by the challenges associated with representing a complex and dynamic reality. The field of Reinforcement Learning (RL), too, has a rich history, and has recently been at the centre of several exponential developments. Modern RL implementations have been able to achieve unprecedented levels of sophistication, handling previously unthinkable degrees of complexity. This review surveys the historical barriers of classical agent-based techniques in economic modelling, and contemplates whether recent developments in RL can overcome any of them.