Tian, Zeyue
AudioX: Diffusion Transformer for Anything-to-Audio Generation
Tian, Zeyue, Jin, Yizhu, Liu, Zhaoyang, Yuan, Ruibin, Tan, Xu, Chen, Qifeng, Xue, Wei, Guo, Yike
Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/
YuE: Scaling Open Foundation Models for Long-Form Music Generation
Yuan, Ruibin, Lin, Hanfeng, Guo, Shuyue, Zhang, Ge, Pan, Jiahao, Zang, Yongyi, Liu, Haohe, Liang, Yiming, Ma, Wenye, Du, Xingjian, Du, Xinrun, Ye, Zhen, Zheng, Tianyu, Ma, Yinghao, Liu, Minghao, Tian, Zeyue, Zhou, Ziya, Xue, Liumeng, Qu, Xingwei, Li, Yizhi, Wu, Shangda, Shen, Tianhao, Ma, Ziyang, Zhan, Jun, Wang, Chunhui, Wang, Yatian, Chi, Xiaowei, Zhang, Xinyue, Yang, Zhenzhu, Wang, Xiangzhou, Liu, Shansong, Mei, Lingrui, Li, Peng, Wang, Junjie, Yu, Jianwei, Pang, Guojian, Li, Xu, Wang, Zihao, Zhou, Xiaohuan, Yu, Lijun, Benetos, Emmanouil, Chen, Yong, Lin, Chenghua, Chen, Xie, Xia, Gus, Zhang, Zhaoxiang, Zhang, Chao, Chen, Wenhu, Zhou, Xinyu, Qiu, Xipeng, Dannenberg, Roger, Liu, Jiaheng, Yang, Jian, Huang, Wenhao, Xue, Wei, Tan, Xu, Guo, Yike
We tackle the task of long-form music generation--particularly the challenging \textbf{lyrics-to-song} problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
Audio-FLAN: A Preliminary Release
Xue, Liumeng, Zhou, Ziya, Pan, Jiahao, Li, Zixuan, Fan, Shuai, Ma, Yinghao, Cheng, Sitong, Yang, Dongchao, Guo, Haohan, Xiao, Yujia, Wang, Xinsheng, Shen, Zixuan, Zhu, Chuanbo, Zhang, Xinshen, Liu, Tianchi, Yuan, Ruibin, Tian, Zeyue, Liu, Haohe, Benetos, Emmanouil, Zhang, Ge, Guo, Yike, Xue, Wei
Recent advancements in audio tokenization have significantly enhanced the integration of audio capabilities into large language models (LLMs). However, audio understanding and generation are often treated as distinct tasks, hindering the development of truly unified audio-language models. While instruction tuning has demonstrated remarkable success in improving generalization and zero-shot learning across text and vision, its application to audio remains largely unexplored. A major obstacle is the lack of comprehensive datasets that unify audio understanding and generation. To address this, we introduce Audio-FLAN, a large-scale instruction-tuning dataset covering 80 diverse tasks across speech, music, and sound domains, with over 100 million instances. Audio-FLAN lays the foundation for unified audio-language models that can seamlessly handle both understanding (e.g., transcription, comprehension) and generation (e.g., speech, music, sound) tasks across a wide range of audio domains in a zero-shot manner. The Audio-FLAN dataset is available on HuggingFace and GitHub and will be continuously updated.
LLMs Meet Multimodal Generation and Editing: A Survey
He, Yingqing, Liu, Zhaoyang, Chen, Jingye, Tian, Zeyue, Liu, Hongyu, Chi, Xiaowei, Liu, Runtao, Yuan, Ruibin, Xing, Yazhou, Wang, Wenhai, Dai, Jifeng, Zhang, Yong, Xue, Wei, Liu, Qifeng, Guo, Yike, Chen, Qifeng
With the recent advancement in large language models (LLMs), there is a growing interest in combining LLMs with multimodal learning. Previous surveys of multimodal large language models (MLLMs) mainly focus on multimodal understanding. This survey elaborates on multimodal generation and editing across various domains, comprising image, video, 3D, and audio. Specifically, we summarize the notable advancements with milestone works in these fields and categorize these studies into LLM-based and CLIP/T5-based methods. Then, we summarize the various roles of LLMs in multimodal generation and exhaustively investigate the critical technical components behind these methods and the multimodal datasets utilized in these studies. Additionally, we dig into tool-augmented multimodal agents that can leverage existing generative models for human-computer interaction. Lastly, we discuss the advancements in the generative AI safety field, investigate emerging applications, and discuss future prospects. Our work provides a systematic and insightful overview of multimodal generation and processing, which is expected to advance the development of Artificial Intelligence for Generative Content (AIGC) and world models. A curated list of all related papers can be found at https://github.com/YingqingHe/Awesome-LLMs-meet-Multimodal-Generation
VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling
Tian, Zeyue, Liu, Zhaoyang, Yuan, Ruibin, Pan, Jiahao, Huang, Xiaoqiang, Liu, Qifeng, Tan, Xu, Chen, Qifeng, Xue, Wei, Guo, Yike
In this work, we systematically study music generation conditioned solely on the video. First, we present a large-scale dataset comprising 190K video-music pairs, including various genres such as movie trailers, advertisements, and documentaries. Furthermore, we propose VidMuse, a simple framework for generating music aligned with video inputs. VidMuse stands out by producing high-fidelity music that is both acoustically and semantically aligned with the video. By incorporating local and global visual cues, VidMuse enables the creation of musically coherent audio tracks that consistently match the video content through Long-Short-Term modeling. Through extensive experiments, VidMuse outperforms existing models in terms of audio quality, diversity, and audio-visual alignment. The code and datasets will be available at https://github.com/ZeyueT/VidMuse/.
ComposerX: Multi-Agent Symbolic Music Composition with LLMs
Deng, Qixin, Yang, Qikai, Yuan, Ruibin, Huang, Yipeng, Wang, Yi, Liu, Xubo, Tian, Zeyue, Pan, Jiahao, Zhang, Ge, Lin, Hanfeng, Li, Yizhi, Ma, Yinghao, Fu, Jie, Lin, Chenghua, Benetos, Emmanouil, Wang, Wenwu, Xia, Guangyu, Xue, Wei, Guo, Yike
Music composition represents the creative side of humanity, and itself is a complex task that requires abilities to understand and generate information with long dependency and harmony constraints. While demonstrating impressive capabilities in STEM subjects, current LLMs easily fail in this task, generating ill-written music even when equipped with modern techniques like In-Context-Learning and Chain-of-Thoughts. To further explore and enhance LLMs' potential in music composition by leveraging their reasoning ability and the large knowledge base in music history and theory, we propose ComposerX, an agent-based symbolic music generation framework. We find that applying a multi-agent approach significantly improves the music composition quality of GPT-4. The results demonstrate that ComposerX is capable of producing coherent polyphonic music compositions with captivating melodies, while adhering to user instructions.
ChatMusician: Understanding and Generating Music Intrinsically with LLM
Yuan, Ruibin, Lin, Hanfeng, Wang, Yi, Tian, Zeyue, Wu, Shangda, Shen, Tianhao, Zhang, Ge, Wu, Yuhang, Liu, Cong, Zhou, Ziya, Ma, Ziyang, Xue, Liumeng, Wang, Ziyu, Liu, Qin, Zheng, Tianyu, Li, Yizhi, Ma, Yinghao, Liang, Yiming, Chi, Xiaowei, Liu, Ruibo, Wang, Zili, Li, Pengfei, Wu, Jingcheng, Lin, Chenghua, Liu, Qifeng, Jiang, Tao, Huang, Wenhao, Chen, Wenhu, Benetos, Emmanouil, Fu, Jie, Xia, Gus, Dannenberg, Roger, Xue, Wei, Kang, Shiyin, Guo, Yike
While Large Language Models (LLMs) demonstrate impressive capabilities in text generation, we find that their ability has yet to be generalized to music, humanity's creative language. We introduce ChatMusician, an open-source LLM that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language. ChatMusician can understand and generate music with a pure text tokenizer without any external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score. Our model is capable of composing well-structured, full-length music, conditioned on texts, chords, melodies, motifs, musical forms, etc, surpassing GPT-4 baseline. On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 on zero-shot setting by a noticeable margin. Our work reveals that LLMs can be an excellent compressor for music, but there remains significant territory to be conquered. We release our 4B token music-language corpora MusicPile, the collected MusicTheoryBench, code, model and demo in GitHub.
MARBLE: Music Audio Representation Benchmark for Universal Evaluation
Yuan, Ruibin, Ma, Yinghao, Li, Yizhi, Zhang, Ge, Chen, Xingran, Yin, Hanzhi, Zhuo, Le, Liu, Yiqi, Huang, Jiawen, Tian, Zeyue, Deng, Binyue, Wang, Ningzhi, Lin, Chenghua, Benetos, Emmanouil, Ragni, Anton, Gyenge, Norbert, Dannenberg, Roger, Chen, Wenhu, Xia, Gus, Xue, Wei, Liu, Si, Wang, Shi, Liu, Ruibo, Guo, Yike, Fu, Jie
In the era of extensive intersection between art and Artificial Intelligence (AI), such as image generation and fiction co-creation, AI for music remains relatively nascent, particularly in music understanding. This is evident in the limited work on deep music representations, the scarcity of large-scale datasets, and the absence of a universal and community-driven benchmark. To address this issue, we introduce the Music Audio Representation Benchmark for universaL Evaluation, termed MARBLE. It aims to provide a benchmark for various Music Information Retrieval (MIR) tasks by defining a comprehensive taxonomy with four hierarchy levels, including acoustic, performance, score, and high-level description. We then establish a unified protocol based on 14 tasks on 8 public-available datasets, providing a fair and standard assessment of representations of all open-sourced pre-trained models developed on music recordings as baselines. Besides, MARBLE offers an easy-to-use, extendable, and reproducible suite for the community, with a clear statement on copyright issues on datasets. Results suggest recently proposed large-scale pre-trained musical language models perform the best in most tasks, with room for further improvement. The leaderboard and toolkit repository are published at https://marble-bm.shef.ac.uk to promote future music AI research.