Goto

Collaborating Authors

 Tian, Lu


Towards Discriminative Representation Learning for Unsupervised Person Re-identification

arXiv.org Artificial Intelligence

In this work, we address the problem of unsupervised domain adaptation for person re-ID where annotations are available for the source domain but not for target. Previous methods typically follow a two-stage optimization pipeline, where the network is first pre-trained on source and then fine-tuned on target with pseudo labels created by feature clustering. Such methods sustain two main limitations. (1) The label noise may hinder the learning of discriminative features for recognizing target classes. (2) The domain gap may hinder knowledge transferring from source to target. We propose three types of technical schemes to alleviate these issues. First, we propose a cluster-wise contrastive learning algorithm (CCL) by iterative optimization of feature learning and cluster refinery to learn noise-tolerant representations in the unsupervised manner. Second, we adopt a progressive domain adaptation (PDA) strategy to gradually mitigate the domain gap between source and target data. Third, we propose Fourier augmentation (FA) for further maximizing the class separability of re-ID models by imposing extra constraints in the Fourier space. We observe that these proposed schemes are capable of facilitating the learning of discriminative feature representations. Experiments demonstrate that our method consistently achieves notable improvements over the state-of-the-art unsupervised re-ID methods on multiple benchmarks, e.g., surpassing MMT largely by 8.1\%, 9.9\%, 11.4\% and 11.1\% mAP on the Market-to-Duke, Duke-to-Market, Market-to-MSMT and Duke-to-MSMT tasks, respectively.


Efficient Estimation and Evaluation of Prediction Rules in Semi-Supervised Settings under Stratified Sampling

arXiv.org Machine Learning

In many contemporary applications, large amounts of unlabeled data are readily available while labeled examples are limited. There has been substantial interest in semi-supervised learning (SSL) which aims to leverage unlabeled data to improve estimation or prediction. However, current SSL literature focuses primarily on settings where labeled data is selected randomly from the population of interest. Non-random sampling, while posing additional analytical challenges, is highly applicable to many real world problems. Moreover, no SSL methods currently exist for estimating the prediction performance of a fitted model under non-random sampling. In this paper, we propose a two-step SSL procedure for evaluating a prediction rule derived from a working binary regression model based on the Brier score and overall misclassification rate under stratified sampling. In step I, we impute the missing labels via weighted regression with nonlinear basis functions to account for nonrandom sampling and to improve efficiency. In step II, we augment the initial imputations to ensure the consistency of the resulting estimators regardless of the specification of the prediction model or the imputation model. The final estimator is then obtained with the augmented imputations. We provide asymptotic theory and numerical studies illustrating that our proposals outperform their supervised counterparts in terms of efficiency gain. Our methods are motivated by electronic health records (EHR) research and validated with a real data analysis of an EHR-based study of diabetic neuropathy.


Communication-efficient Distributed Estimation and Inference for Transelliptical Graphical Models

arXiv.org Machine Learning

We propose communication-efficient distributed estimation and inference methods for the transelliptical graphical model, a semiparametric extension of the elliptical distribution in the high dimensional regime. In detail, the proposed method distributes the $d$-dimensional data of size $N$ generated from a transelliptical graphical model into $m$ worker machines, and estimates the latent precision matrix on each worker machine based on the data of size $n=N/m$. It then debiases the local estimators on the worker machines and send them back to the master machine. Finally, on the master machine, it aggregates the debiased local estimators by averaging and hard thresholding. We show that the aggregated estimator attains the same statistical rate as the centralized estimator based on all the data, provided that the number of machines satisfies $m \lesssim \min\{N\log d/d,\sqrt{N/(s^2\log d)}\}$, where $s$ is the maximum number of nonzero entries in each column of the latent precision matrix. It is worth noting that our algorithm and theory can be directly applied to Gaussian graphical models, Gaussian copula graphical models and elliptical graphical models, since they are all special cases of transelliptical graphical models. Thorough experiments on synthetic data back up our theory.


Communication-efficient Distributed Sparse Linear Discriminant Analysis

arXiv.org Machine Learning

We propose a communication-efficient distributed estimation method for sparse linear discriminant analysis (LDA) in the high dimensional regime. Our method distributes the data of size $N$ into $m$ machines, and estimates a local sparse LDA estimator on each machine using the data subset of size $N/m$. After the distributed estimation, our method aggregates the debiased local estimators from $m$ machines, and sparsifies the aggregated estimator. We show that the aggregated estimator attains the same statistical rate as the centralized estimation method, as long as the number of machines $m$ is chosen appropriately. Moreover, we prove that our method can attain the model selection consistency under a milder condition than the centralized method. Experiments on both synthetic and real datasets corroborate our theory.