Thudi, Anvith
MixMin: Finding Data Mixtures via Convex Minimization
Thudi, Anvith, Rovers, Evianne, Ruan, Yangjun, Thrush, Tristan, Maddison, Chris J.
Modern machine learning pipelines are increasingly combining and mixing data from diverse and disparate sources, e.g., pre-training large language models. Yet, finding the optimal data mixture is a challenging and open problem. We formalize this data mixing problem as a bi-level objective: the best mixture is the one that would lead to the best model for a downstream objective. Unfortunately, this objective is generally intractable. In this paper, we make the observation that the bi-level data mixing objective becomes convex as our model class becomes larger. We develop and study a gradient-based approach for optimizing this convex objective, which we call MixMin, and test it on language modeling and chemistry tasks. MixMin was the only method that uniformly improved the data mixture in all our experiments. With MixMin, we improved the data mixture using less than 0.2% additional compute for a pythia-410M model trained on 8.2B tokens, resulting between 1-5% relative improvement to negative log likelihood on PIQA, ARC Easy, SciQ, and OpenWebMath. Crucially, we found that MixMin mixtures for smaller models improved training of larger models, suggesting that MixMin mixtures may be scale-invariant. When mixing bioassay data to train an XGBoost model, we saw improvements to average precision scores of 0.03-0.15.
Finding Optimally Robust Data Mixtures via Concave Maximization
Thudi, Anvith, Maddison, Chris J.
Training on mixtures of data distributions is now common in many modern machine learning pipelines, useful for performing well on several downstream tasks. Group distributionally robust optimization (group DRO) is one popular way to learn mixture weights for training a specific model class, but group DRO methods suffer for non-linear models due to non-convex loss functions and when the models are non-parametric. We address these challenges by proposing to solve a more general DRO problem, giving a method we call MixMax. MixMax selects mixture weights by maximizing a particular concave objective with entropic mirror ascent, and, crucially, we prove that optimally fitting this mixture distribution over the set of bounded predictors returns a group DRO optimal model. Experimentally, we tested MixMax on a sequence modeling task with transformers and on a variety of non-parametric learning problems. In all instances MixMax matched or outperformed the standard data mixing and group DRO baselines, and in particular, MixMax improved the performance of XGBoost over the only baseline, data balancing, for variations of the ACSIncome and CelebA annotations datasets.
Unlearnable Algorithms for In-context Learning
Muresanu, Andrei, Thudi, Anvith, Zhang, Michael R., Papernot, Nicolas
Machine unlearning is a desirable operation as models get increasingly deployed on data with unknown provenance. However, achieving exact unlearning -- obtaining a model that matches the model distribution when the data to be forgotten was never used -- is challenging or inefficient, often requiring significant retraining. In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model (LLM). We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data. We provide an algorithm for selecting few-shot training examples to prepend to the prompt given to an LLM (for task adaptation), ERASE, whose unlearning operation cost is independent of model and dataset size, meaning it scales to large models and datasets. We additionally compare our approach to fine-tuning approaches and discuss the trade-offs between the two approaches. This leads us to propose a new holistic measure of unlearning cost which accounts for varying inference costs, and conclude that in-context learning can often be more favourable than fine-tuning for deployments involving unlearning requests.
Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD
Thudi, Anvith, Jia, Hengrui, Meehan, Casey, Shumailov, Ilia, Papernot, Nicolas
Differentially private stochastic gradient descent (DP-SGD) is the canonical approach to private deep learning. While the current privacy analysis of DP-SGD is known to be tight in some settings, several empirical results suggest that models trained on common benchmark datasets leak significantly less privacy for many datapoints. Yet, despite past attempts, a rigorous explanation for why this is the case has not been reached. Is it because there exist tighter privacy upper bounds when restricted to these dataset settings, or are our attacks not strong enough for certain datapoints? In this paper, we provide the first per-instance (i.e., ``data-dependent") DP analysis of DP-SGD. Our analysis captures the intuition that points with similar neighbors in the dataset enjoy better data-dependent privacy than outliers. Formally, this is done by modifying the per-step privacy analysis of DP-SGD to introduce a dependence on the distribution of model updates computed from a training dataset. We further develop a new composition theorem to effectively use this new per-step analysis to reason about an entire training run. Put all together, our evaluation shows that this novel DP-SGD analysis allows us to now formally show that DP-SGD leaks significantly less privacy for many datapoints (when trained on common benchmarks) than the current data-independent guarantee. This implies privacy attacks will necessarily fail against many datapoints if the adversary does not have sufficient control over the possible training datasets.
Training Private Models That Know What They Don't Know
Rabanser, Stephan, Thudi, Anvith, Thakurta, Abhradeep, Dvijotham, Krishnamurthy, Papernot, Nicolas
Training reliable deep learning models which avoid making overconfident but incorrect predictions is a longstanding challenge. This challenge is further exacerbated when learning has to be differentially private: protection provided to sensitive data comes at the price of injecting additional randomness into the learning process. In this work, we conduct a thorough empirical investigation of selective classifiers -- that can abstain when they are unsure -- under a differential privacy constraint. We find that several popular selective prediction approaches are ineffective in a differentially private setting as they increase the risk of privacy leakage. At the same time, we identify that a recent approach that only uses checkpoints produced by an off-the-shelf private learning algorithm stands out as particularly suitable under DP. Further, we show that differential privacy does not just harm utility but also degrades selective classification performance. To analyze this effect across privacy levels, we propose a novel evaluation mechanism which isolate selective prediction performance across model utility levels. Our experimental results show that recovering the performance level attainable by non-private models is possible but comes at a considerable coverage cost as the privacy budget decreases.
Proof-of-Learning is Currently More Broken Than You Think
Fang, Congyu, Jia, Hengrui, Thudi, Anvith, Yaghini, Mohammad, Choquette-Choo, Christopher A., Dullerud, Natalie, Chandrasekaran, Varun, Papernot, Nicolas
Proof-of-Learning (PoL) proposes that a model owner logs training checkpoints to establish a proof of having expended the computation necessary for training. The authors of PoL forego cryptographic approaches and trade rigorous security guarantees for scalability to deep learning. They empirically argued the benefit of this approach by showing how spoofing--computing a proof for a stolen model--is as expensive as obtaining the proof honestly by training the model. However, recent work has provided a counter-example and thus has invalidated this observation. In this work we demonstrate, first, that while it is true that current PoL verification is not robust to adversaries, recent work has largely underestimated this lack of robustness. This is because existing spoofing strategies are either unreproducible or target weakened instantiations of PoL--meaning they are easily thwarted by changing hyperparameters of the verification. Instead, we introduce the first spoofing strategies that can be reproduced across different configurations of the PoL verification and can be done for a fraction of the cost of previous spoofing strategies. This is possible because we identify key vulnerabilities of PoL and systematically analyze the underlying assumptions needed for robust verification of a proof. On the theoretical side, we show how realizing these assumptions reduces to open problems in learning theory.We conclude that one cannot develop a provably robust PoL verification mechanism without further understanding of optimization in deep learning.
Bounding Membership Inference
Thudi, Anvith, Shumailov, Ilia, Boenisch, Franziska, Papernot, Nicolas
Differential Privacy (DP) is the de facto standard for reasoning about the privacy guarantees of a training algorithm. Despite the empirical observation that DP reduces the vulnerability of models to existing membership inference (MI) attacks, a theoretical underpinning as to why this is the case is largely missing in the literature. In practice, this means that models need to be trained with DP guarantees that greatly decrease their accuracy. In this paper, we provide a tighter bound on the positive accuracy (i.e., attack precision) of any MI adversary when a training algorithm provides $(\varepsilon, \delta)$-DP. Our bound informs the design of a novel privacy amplification scheme: an effective training set is sub-sampled from a larger set prior to the beginning of training. We find this greatly reduces the bound on MI positive accuracy. As a result, our scheme allows the use of looser DP guarantees to limit the success of any MI adversary; this ensures that the model's accuracy is less impacted by the privacy guarantee. While this clearly benefits entities working with far more data than they need to train on, it can also improve the accuracy-privacy trade-off on benchmarks studied in the academic literature. Consequently, we also find that subsampling decreases the effectiveness of a state-of-the-art MI attack (LiRA) much more effectively than training with stronger DP guarantees on MNIST and CIFAR10. We conclude by discussing implications of our MI bound on the field of machine unlearning.
On the Necessity of Auditable Algorithmic Definitions for Machine Unlearning
Thudi, Anvith, Jia, Hengrui, Shumailov, Ilia, Papernot, Nicolas
Machine unlearning, i.e. having a model forget about some of its training data, has become increasingly more important as privacy legislation promotes variants of the right-to-be-forgotten. In the context of deep learning, approaches for machine unlearning are broadly categorized into two classes: exact unlearning methods, where an entity has formally removed the data point's impact on the model by retraining the model from scratch, and approximate unlearning, where an entity approximates the model parameters one would obtain by exact unlearning to save on compute costs. In this paper we first show that the definition that underlies approximate unlearning, which seeks to prove the approximately unlearned model is close to an exactly retrained model, is incorrect because one can obtain the same model using different datasets. Thus one could unlearn without modifying the model at all. We then turn to exact unlearning approaches and ask how to verify their claims of unlearning. Our results show that even for a given training trajectory one cannot formally prove the absence of certain data points used during training. We thus conclude that unlearning is only well-defined at the algorithmic level, where an entity's only possible auditable claim to unlearning is that they used a particular algorithm designed to allow for external scrutiny during an audit.
Proof-of-Learning: Definitions and Practice
Jia, Hengrui, Yaghini, Mohammad, Choquette-Choo, Christopher A., Dullerud, Natalie, Thudi, Anvith, Chandrasekaran, Varun, Papernot, Nicolas
Training machine learning (ML) models typically involves expensive iterative optimization. Once the model's final parameters are released, there is currently no mechanism for the entity which trained the model to prove that these parameters were indeed the result of this optimization procedure. Such a mechanism would support security of ML applications in several ways. For instance, it would simplify ownership resolution when multiple parties contest ownership of a specific model. It would also facilitate the distributed training across untrusted workers where Byzantine workers might otherwise mount a denial-of-service by returning incorrect model updates. In this paper, we remediate this problem by introducing the concept of proof-of-learning in ML. Inspired by research on both proof-of-work and verified computations, we observe how a seminal training algorithm, stochastic gradient descent, accumulates secret information due to its stochasticity. This produces a natural construction for a proof-of-learning which demonstrates that a party has expended the compute require to obtain a set of model parameters correctly. In particular, our analyses and experiments show that an adversary seeking to illegitimately manufacture a proof-of-learning needs to perform *at least* as much work than is needed for gradient descent itself. We also instantiate a concrete proof-of-learning mechanism in both of the scenarios described above. In model ownership resolution, it protects the intellectual property of models released publicly. In distributed training, it preserves availability of the training procedure. Our empirical evaluation validates that our proof-of-learning mechanism is robust to variance induced by the hardware (ML accelerators) and software stacks.