Thomas B. Schön
Linearly constrained Gaussian processes
Carl Jidling, Niklas Wahlström, Adrian Wills, Thomas B. Schön
Learning convex bounds for linear quadratic control policy synthesis
Jack Umenberger, Thomas B. Schön
Learning to make decisions from observed data in dynamic environments remains a problem of fundamental importance in a number of fields, from artificial intelligence and robotics, to medicine and finance. This paper concerns the problem of learning control policies for unknown linear dynamical systems so as to maximize a quadratic reward function. We present a method to optimize the expected value of the reward over the posterior distribution of the unknown system parameters, given data. The algorithm involves sequential convex programing, and enjoys reliable local convergence and robust stability guarantees. Numerical simulations and stabilization of a real-world inverted pendulum are used to demonstrate the approach, with strong performance and robustness properties observed in both.
Learning convex bounds for linear quadratic control policy synthesis
Jack Umenberger, Thomas B. Schön
Learning to make decisions from observed data in dynamic environments remains a problem of fundamental importance in a number of fields, from artificial intelligence and robotics, to medicine and finance. This paper concerns the problem of learning control policies for unknown linear dynamical systems so as to maximize a quadratic reward function. We present a method to optimize the expected value of the reward over the posterior distribution of the unknown system parameters, given data. The algorithm involves sequential convex programing, and enjoys reliable local convergence and robust stability guarantees. Numerical simulations and stabilization of a real-world inverted pendulum are used to demonstrate the approach, with strong performance and robustness properties observed in both.
Robust exploration in linear quadratic reinforcement learning
Jack Umenberger, Mina Ferizbegovic, Thomas B. Schön, Håkan Hjalmarsson
This paper concerns the problem of learning control policies for an unknown linear dynamical system to minimize a quadratic cost function. We present a method, based on convex optimization, that accomplishes this task robustly: i.e., we minimize the worst-case cost, accounting for system uncertainty given the observed data. The method balances exploitation and exploration, exciting the system in such a way so as to reduce uncertainty in the model parameters to which the worst-case cost is most sensitive. Numerical simulations and application to a hardware-in-the-loop servo-mechanism demonstrate the approach, with appreciable performance and robustness gains over alternative methods observed in both.
Linearly constrained Gaussian processes
Carl Jidling, Niklas Wahlström, Adrian Wills, Thomas B. Schön
We consider a modification of the covariance function in Gaussian processes to correctly account for known linear operator constraints. By modeling the target function as a transformation of an underlying function, the constraints are explicitly incorporated in the model such that they are guaranteed to be fulfilled by any sample drawn or prediction made. We also propose a constructive procedure for designing the transformation operator and illustrate the result on both simulated and real-data examples.