Goto

Collaborating Authors

 Thomas, Jonathan D.


ACE: Abstractions for Communicating Efficiently

arXiv.org Artificial Intelligence

A central but unresolved aspect of problem-solving in AI is the capability to introduce and use abstractions, something humans excel at. Work in cognitive science has demonstrated that humans tend towards higher levels of abstraction when engaged in collaborative task-oriented communication, enabling gradually shorter and more information-efficient utterances. Several computational methods have attempted to replicate this phenomenon, but all make unrealistic simplifying assumptions about how abstractions are introduced and learned. Our method, Abstractions for Communicating Efficiently (ACE), overcomes these limitations through a neuro-symbolic approach. On the symbolic side, we draw on work from library learning for proposing abstractions. We combine this with neural methods for communication and reinforcement learning, via a novel use of bandit algorithms for controlling the exploration and exploitation trade-off in introducing new abstractions. ACE exhibits similar tendencies to humans on a collaborative construction task from the cognitive science literature, where one agent (the architect) instructs the other (the builder) to reconstruct a scene of block-buildings. ACE results in the emergence of an efficient language as a by-product of collaborative communication. Beyond providing mechanistic insights into human communication, our work serves as a first step to providing conversational agents with the ability for human-like communicative abstractions.


Scalable Multi-Agent Reinforcement Learning for Warehouse Logistics with Robotic and Human Co-Workers

arXiv.org Artificial Intelligence

We envision a warehouse in which dozens of mobile robots and human pickers work together to collect and deliver items within the warehouse. The fundamental problem we tackle, called the order-picking problem, is how these worker agents must coordinate their movement and actions in the warehouse to maximise performance (e.g. order throughput). Established industry methods using heuristic approaches require large engineering efforts to optimise for innately variable warehouse configurations. In contrast, multi-agent reinforcement learning (MARL) can be flexibly applied to diverse warehouse configurations (e.g. size, layout, number/types of workers, item replenishment frequency), as the agents learn through experience how to optimally cooperate with one another. We develop hierarchical MARL algorithms in which a manager assigns goals to worker agents, and the policies of the manager and workers are co-trained toward maximising a global objective (e.g. pick rate). Our hierarchical algorithms achieve significant gains in sample efficiency and overall pick rates over baseline MARL algorithms in diverse warehouse configurations, and substantially outperform two established industry heuristics for order-picking systems.


Achieving Goals using Reward Shaping and Curriculum Learning

arXiv.org Artificial Intelligence

Real-time control for robotics is a popular research area in the reinforcement learning community. Through the use of techniques such as reward shaping, researchers have managed to train online agents across a multitude of domains. Despite these advances, solving goal-oriented tasks still requires complex architectural changes or hard constraints to be placed on the problem. In this article, we solve the problem of stacking multiple cubes by combining curriculum learning, reward shaping, and a high number of efficiently parallelized environments. We introduce two curriculum learning settings that allow us to separate the complex task into sequential sub-goals, hence enabling the learning of a problem that may otherwise be too difficult. We focus on discussing the challenges encountered while implementing them in a goal-conditioned environment. Finally, we extend the best configuration identified on a higher complexity environment with differently shaped objects.