Theocharous, Georgios
Structured Kernel-Based Reinforcement Learning
Kveton, Branislav (Technicolor Labs) | Theocharous, Georgios (Adobe)
Kernel-based reinforcement learning (KBRL) is a popular approach to learning non-parametric value function approximations. In this paper, we present structured KBRL, a paradigm for kernel-based RL that allows for modeling independencies in the transition and reward models of problems. Real-world problems often exhibit this structure and can be solved more efficiently when it is modeled. We make three contributions. First, we motivate our work, define a structured backup operator, and prove that it is a contraction. Second, we show how to evaluate our operator efficiently. Our analysis reveals that the fixed point of the operator is the optimal value function in a special factored MDP. Finally, we evaluate our method on a synthetic problem and compare it to two KBRL baselines. In most experiments, we learn better policies than the baselines from an order of magnitude less training data.
Kernel-Based Reinforcement Learning on Representative States
Kveton, Branislav (Technicolor Labs) | Theocharous, Georgios (Yahoo Labs)
Markov decision processes (MDPs) are an established framework for solving sequential decision-making problems under uncertainty. In this work, we propose a new method for batch-mode reinforcement learning (RL) with continuous state variables. The method is an approximation to kernel-based RL on a set of k representative states. Similarly to kernel-based RL, our solution is a fixed point of a kernelized Bellman operator and can approximate the optimal solution to an arbitrary level of granularity. Unlike kernel-based RL, our method is fast. In particular, our policies can be computed in O ( n ) time, where n is the number of training examples. The time complexity of kernel-based RL is ฮฉ( n 2 ). We introduce our method, analyze its convergence, and compare it to existing work. The method is evaluated on two existing control problems with 2 to 4 continuous variables and a new problem with 64 variables. In all cases, we outperform state-of-the-art results and offer simpler solutions.
Compressing POMDPs Using Locality Preserving Non-Negative Matrix Factorization
Theocharous, Georgios (Intel) | Mahadevan, Sridhar (University of Massachusetts)
Partially Observable Markov Decision Processes (POMDPs) are a well-established and rigorous framework for sequential decision-making under uncertainty. POMDPs are well-known to be intractable to solve exactly, and there has been significant work on finding tractable approximation methods. One well-studied approach is to find a compression of the original POMDP by projecting the belief states to a lower-dimensional space. We present a novel dimensionality reduction method for POMDPs based on locality preserving non-negative matrix factorization. Unlike previous approaches, such as Krylov compression and regular non-negative matrix factorization, our approach preserves the local geometry of the belief space manifold. We present results on standard benchmark POMDPs showing improved performance over previously explored compression algorithms for POMDPs.
Approximate Planning in POMDPs with Macro-Actions
Theocharous, Georgios, Kaelbling, Leslie P.
Recent research has demonstrated that useful POMDP solutions do not require consideration of the entire belief space. We extend this idea with the notion of temporal abstraction. We present and explore a new reinforcement learning algorithm over grid-points in belief space, which uses macro-actions and Monte Carlo updates of the Q-values. We apply the algorithm to a large scale robot navigation task and demonstrate that with temporal abstraction we can consider an even smaller part of the belief space, we can learn POMDP policies faster, and we can do information gathering more efficiently.
Approximate Planning in POMDPs with Macro-Actions
Theocharous, Georgios, Kaelbling, Leslie P.
Recent research has demonstrated that useful POMDP solutions do not require consideration of the entire belief space. We extend this idea with the notion of temporal abstraction. We present and explore a new reinforcement learningalgorithm over grid-points in belief space, which uses macro-actions and Monte Carlo updates of the Q-values. We apply the algorithm to a large scale robot navigation task and demonstrate that with temporal abstraction we can consider an even smaller part of the belief space, we can learn POMDP policies faster, and we can do information gathering more efficiently.