Goto

Collaborating Authors

 Thakurta, Abhradeep Guha


The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD

arXiv.org Artificial Intelligence

We propose a simple heuristic privacy analysis of noisy clipped stochastic gradient descent (DP-SGD) in the setting where only the last iterate is released and the intermediate iterates remain hidden. Namely, our heuristic assumes a linear structure for the model. We show experimentally that our heuristic is predictive of the outcome of privacy auditing applied to various training procedures. Thus it can be used prior to training as a rough estimate of the final privacy leakage. We also probe the limitations of our heuristic by providing some artificial counterexamples where it underestimates the privacy leakage. The standard composition-based privacy analysis of DP-SGD effectively assumes that the adversary has access to all intermediate iterates, which is often unrealistic. However, this analysis remains the state of the art in practice. While our heuristic does not replace a rigorous privacy analysis, it illustrates the large gap between the best theoretical upper bounds and the privacy auditing lower bounds and sets a target for further work to improve the theoretical privacy analyses. We also empirically support our heuristic and show existing privacy auditing attacks are bounded by our heuristic analysis in both vision and language tasks.


Improved Differentially Private and Lazy Online Convex Optimization

arXiv.org Machine Learning

We study the task of $(\epsilon, \delta)$-differentially private online convex optimization (OCO). In the online setting, the release of each distinct decision or iterate carries with it the potential for privacy loss. This problem has a long history of research starting with Jain et al. [2012] and the best known results for the regime of {\epsilon} not being very small are presented in Agarwal et al. [2023]. In this paper we improve upon the results of Agarwal et al. [2023] in terms of the dimension factors as well as removing the requirement of smoothness. Our results are now the best known rates for DP-OCO in this regime. Our algorithms builds upon the work of [Asi et al., 2023] which introduced the idea of explicitly limiting the number of switches via rejection sampling. The main innovation in our algorithm is the use of sampling from a strongly log-concave density which allows us to trade-off the dimension factors better leading to improved results.


Sample-Efficient Personalization: Modeling User Parameters as Low Rank Plus Sparse Components

arXiv.org Machine Learning

Personalization of machine learning (ML) predictions for individual users/domains/enterprises is critical for practical recommendation systems. Standard personalization approaches involve learning a user/domain specific embedding that is fed into a fixed global model which can be limiting. On the other hand, personalizing/fine-tuning model itself for each user/domain -- a.k.a meta-learning -- has high storage/infrastructure cost. Moreover, rigorous theoretical studies of scalable personalization approaches have been very limited. To address the above issues, we propose a novel meta-learning style approach that models network weights as a sum of low-rank and sparse components. This captures common information from multiple individuals/users together in the low-rank part while sparse part captures user-specific idiosyncrasies. We then study the framework in the linear setting, where the problem reduces to that of estimating the sum of a rank-$r$ and a $k$-column sparse matrix using a small number of linear measurements. We propose a computationally efficient alternating minimization method with iterative hard thresholding -- AMHT-LRS -- to learn the low-rank and sparse part. Theoretically, for the realizable Gaussian data setting, we show that AMHT-LRS solves the problem efficiently with nearly optimal sample complexity. Finally, a significant challenge in personalization is ensuring privacy of each user's sensitive data. We alleviate this problem by proposing a differentially private variant of our method that also is equipped with strong generalization guarantees.


How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy

Journal of Artificial Intelligence Research

Machine Learning (ML) models are ubiquitous in real-world applications and are a constant focus of research. Modern ML models have become more complex, deeper, and harder to reason about. At the same time, the community has started to realize the importance of protecting the privacy of the training data that goes into these models. Differential Privacy (DP) has become a gold standard for making formal statements about data anonymization. However, while some adoption of DP has happened in industry, attempts to apply DP to real world complex ML models are still few and far between. The adoption of DP is hindered by limited practical guidance of what DP protection entails, what privacy guarantees to aim for, and the difficulty of achieving good privacy-utility-computation trade-offs for ML models. Tricks for tuning and maximizing performance are scattered among papers or stored in the heads of practitioners, particularly with respect to the challenging task of hyperparameter tuning. Furthermore, the literature seems to present conflicting evidence on how and whether to apply architectural adjustments and which components are โ€œsafeโ€ to use with DP. In this survey paper, we attempt to create a self-contained guide that gives an in-depth overview of the field of DP ML. We aim to assemble information about achieving the best possible DP ML model with rigorous privacy guarantees. Our target audience is both researchers and practitioners. Researchers interested in DP for ML will benefit from a clear overview of current advances and areas for improvement. We also include theory-focused sections that highlight important topics such as privacy accounting and convergence. For a practitioner, this survey provides a background in DP theory and a clear step-by-step guide for choosing an appropriate privacy definition and approach, implementing DP training, potentially updating the model architecture, and tuning hyperparameters. For both researchers and practitioners, consistently and fully reporting privacy guarantees is critical, so we propose a set of specific best practices for stating guarantees. With sufficient computation and a sufficiently large training set or supplemental nonprivate data, both good accuracy (that is, almost as good as a non-private model) and good privacy can often be achievable. And even when computation and dataset size are limited, there are advantages to training with even a weak (but still finite) formal DP guarantee. Hence, we hope this work will facilitate more widespread deployments of DP ML models.


Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams

arXiv.org Artificial Intelligence

Motivated by recent applications requiring differential privacy over adaptive streams, we investigate the question of optimal instantiations of the matrix mechanism in this setting. We prove fundamental theoretical results on the applicability of matrix factorizations to adaptive streams, and provide a parameter-free fixed-point algorithm for computing optimal factorizations. We instantiate this framework with respect to concrete matrices which arise naturally in machine learning, and train user-level differentially private models with the resulting optimal mechanisms, yielding significant improvements in a notable problem in federated learning with user-level differential privacy.


Private Matrix Approximation and Geometry of Unitary Orbits

arXiv.org Machine Learning

Consider the following optimization problem: Given $n \times n$ matrices $A$ and $\Lambda$, maximize $\langle A, U\Lambda U^*\rangle$ where $U$ varies over the unitary group $\mathrm{U}(n)$. This problem seeks to approximate $A$ by a matrix whose spectrum is the same as $\Lambda$ and, by setting $\Lambda$ to be appropriate diagonal matrices, one can recover matrix approximation problems such as PCA and rank-$k$ approximation. We study the problem of designing differentially private algorithms for this optimization problem in settings where the matrix $A$ is constructed using users' private data. We give efficient and private algorithms that come with upper and lower bounds on the approximation error. Our results unify and improve upon several prior works on private matrix approximation problems. They rely on extensions of packing/covering number bounds for Grassmannians to unitary orbits which should be of independent interest.


Nearly Optimal Private LASSO

Neural Information Processing Systems

We present a nearly optimal differentially private version of the well known LASSO estimator. Our algorithm provides privacy protection with respect to each training data item. This is the first differentially private algorithm that achieves such a bound without the polynomial dependence on $p$ under no addition assumption on the design matrix. In addition, we show that this error bound is nearly optimal amongst all differentially private algorithms. Papers published at the Neural Information Processing Systems Conference.


Model-Agnostic Private Learning

Neural Information Processing Systems

We design differentially private learning algorithms that are agnostic to the learning model assuming access to a limited amount of unlabeled public data. First, we provide a new differentially private algorithm for answering a sequence of m online classification queries (given by a sequence of m unlabeled public feature vectors) based on a private training set. Our algorithm follows the paradigm of subsample-and-aggregate, in which any generic non-private learner is trained on disjoint subsets of the private training set, and then for each classification query, the votes of the resulting classifiers ensemble are aggregated in a differentially private fashion. Our private aggregation is based on a novel combination of the distance-to-instability framework [26], and the sparse-vector technique [15, 18]. We show that our algorithm makes a conservative use of the privacy budget. In particular, if the underlying non-private learner yields a classification error of at most ฮฑ (0, 1), then our construction answers more queries, by at least a factor of 1/ฮฑ in some cases, than what is implied by a straightforward application of the advanced composition theorem for differential privacy. Next, we apply the knowledge transfer technique to construct a private learner that outputs a classifier, which can be used to answer an unlimited number of queries. In the PAC model, we analyze our construction and prove upper bounds on the sample complexity for both the realizable and the non-realizable cases. Similar to non-private sample complexity, our bounds are completely characterized by the VC dimension of the concept class.


Model-Agnostic Private Learning

Neural Information Processing Systems

We design differentially private learning algorithms that are agnostic to the learning model assuming access to limited amount of unlabeled public data. First, we give a new differentially private algorithm for answering a sequence of $m$ online classification queries (given by a sequence of $m$ unlabeled public feature vectors) based on a private training set. Our private algorithm follows the paradigm of subsample-and-aggregate, in which any generic non-private learner is trained on disjoint subsets of the private training set, then for each classification query, the votes of the resulting classifiers ensemble are aggregated in a differentially private fashion. Our private aggregation is based on a novel combination of distance-to-instability framework [Smith & Thakurta 2013] and the sparse-vector technique [Dwork et al. 2009, Hardt & Talwar 2010]. We show that our algorithm makes a conservative use of the privacy budget. In particular, if the underlying non-private learner yields classification error at most $\alpha\in (0, 1)$, then our construction answers more queries, by at least a factor of $1/\alpha$ in some cases, than what is implied by a straightforward application of the advanced composition theorem for differential privacy. Next, we apply the knowledge transfer technique to construct a private learner that outputs a classifier, which can be used to answer unlimited number of queries. In the PAC model, we analyze our construction and prove upper bounds on the sample complexity for both the realizable and the non-realizable cases. As in non-private sample complexity, our bounds are completely characterized by the VC dimension of the concept class.


Practical Locally Private Heavy Hitters

Neural Information Processing Systems

We present new practical local differentially private heavy hitters algorithms achieving optimal or near-optimal worst-case error -- TreeHist and Bitstogram. In both algorithms, server running time is $\tilde O(n)$ and user running time is $\tilde O(1)$, hence improving on the prior state-of-the-art result of Bassily and Smith [STOC 2015] requiring $\tilde O(n^{5/2})$ server time and $\tilde O(n^{3/2})$ user time. With a typically large number of participants in local algorithms ($n$ in the millions), this reduction in time complexity, in particular at the user side, is crucial for the use of such algorithms in practice. We implemented Algorithm TreeHist to verify our theoretical analysis and compared its performance with the performance of Google's RAPPOR code.